**Category : **JEE Main & Advanced

(1) **Equation of the tangent : **The equation of the tangent to the curve \[f'(a)\] at a point \[P({{x}_{1}},\,{{y}_{1}})\] is \[y-{{y}_{1}}={{\left( \frac{dy}{dx} \right)}_{({{x}_{1}},\,{{y}_{1}})}}(x-{{x}_{1}})\].

(2) **Equation of the normal : **The equation of the normal to the curve \[y=f(x)\] at a point \[P({{x}_{1}},\,{{y}_{1}})\] is \[y-{{y}_{1}}=\frac{-1}{\left( \frac{dy}{dx} \right)_{({{x}_{1}},\,{{y}_{1}})}^{{}}}(x-{{x}_{1}})\]

*play_arrow*Velocity and Acceleration in Rectilinear Motion*play_arrow***Slope of the Tangent and Normal***play_arrow***Equation of the Tangent and Normal***play_arrow*Angle of Intersection of Two Curves*play_arrow*Length of Tangent, Normal, Subtangent, Subnormal*play_arrow***Length of Intercept Made on Axes by The Tangent***play_arrow*Length of Perpendicular from Origin to the Tangent*play_arrow*Definition*play_arrow*Definition*play_arrow*Necessary Condition for Extreme Values*play_arrow***Sufficient Criteria for Extreme Values (1st Derivative Test)***play_arrow*Higher Order Derivative Test*play_arrow*Properties of Maxima and Minima*play_arrow*Greatest and Least Values of a Function Defined on an Interval \[[a,\,\,b]\]*play_arrow*Rolle's Theorem*play_arrow*Lagrange's Mean Value Theorem

You need to login to perform this action.

You will be redirected in
3 sec

Free

Videos

Videos