JEE Main & Advanced Mathematics Differentiation Differentiation of Integral Function

Differentiation of Integral Function

Category : JEE Main & Advanced

 If \[{{g}_{1}}(x)\] and \[{{g}_{2}}(x)\] both functions are defined on \[[a,\,\,b]\] and differentiable at a point \[x\in (a,b)\] and \[f(t)\] is continuous for \[{{g}_{1}}(a)\le f(t)\le {{g}_{2}}(b)\], then

 

 

\[\frac{d}{dx}\int_{{{g}_{1}}(x)}^{{{g}_{2}}(x)}{f(t)dt}=f[{{g}_{2}}(x)]{{{g}'}_{2}}(x)-f[{{g}_{1}}(x)]{{{g}'}_{1}}(x)\]

 

 

 

\[=f[{{g}_{2}}(x)]\frac{d}{dx}{{g}_{2}}(x)-f[{{g}_{1}}(x)]\frac{d}{dx}{{g}_{1}}(x)\].

You need to login to perform this action.
You will be redirected in 3 sec spinner

Free
Videos