question_answer1) A point on the line \[3x+5y=15\] and equidistant from the coordinate axes, lies in
A) None of the quadrants
B) Quadrants I and II only
C) Quadrant I only
D) Quadrants I, II, and III only
View Answer play_arrowquestion_answer2) If the lines \[y={{m}_{1}}x+c\]and \[y={{m}_{2}}x+{{c}_{2}}\]are parallel, then
A) \[{{m}_{1}}={{m}_{2}}\]
B) \[{{m}_{1}}{{m}_{2}}=1\]
C) \[{{m}_{1}}{{m}_{2}}=-1\]
D) \[{{m}_{1}}={{m}_{2}}=0\]
View Answer play_arrowA) \[\sqrt{34}\]
B) \[\sqrt{17}\]
C) 17
D) 12
View Answer play_arrowA) 13 units
B) 14 units
C) 15 units
D) none of these
View Answer play_arrowA) 2
B) - 2
C) - 1
D) 1
View Answer play_arrowA) (2, 0) and (8, 0)
B) (2, 1), (8, 1)
C) (-2, 0) (-8, 0)
D) None of these
View Answer play_arrowA) \[\sqrt{18}\] sq. units
B) 18 sq. units
C) 15 sq. units
D) \[\sqrt{15}\] sq. units
View Answer play_arrowA) \[10\sqrt{5}\]sq. units
B) \[\sqrt{5}\]sq. units
C) 40 sq. units
D) \[\sqrt{15}\]sq. units
View Answer play_arrowquestion_answer9) The angle between \[y=x+4\]and\[y=2x-6\]is
A) \[{{\tan }^{-1}}\frac{2}{3}\]
B) \[{{\tan }^{-1}}\frac{3}{5}\]
C) \[{{\tan }^{-1}}\frac{1}{2}\]
D) \[{{\tan }^{-1}}\frac{1}{3}\]
View Answer play_arrowA) (8,-7)
B) (8,7)
C) (1,0)
D) (0,-8)
View Answer play_arrowquestion_answer11) If the points (0, 4) (4, 0) and (5, p) are collinear, then value of p is
A) - 1
B) 7
C) 6
D) 4
View Answer play_arrowA) - 2
B) \[\frac{3}{5}\]
C) \[\frac{2}{5}\]
D) 6
View Answer play_arrowA) (2, - 3)
B) (2, - 1)
C) (2, 3)
D) none of these
View Answer play_arrowquestion_answer14) The radius of the above circle is
A) 5 units
B) 6 units
C) 7 units
D) 8 units
View Answer play_arrowA) \[(0,2\sqrt{3})\,or\,(3,-\sqrt{3})\]
B) \[(0,\sqrt{3})\,or\,(3,\sqrt{3})\]
C) \[(0,2)\,(0,3)\]
D) none of these
View Answer play_arrowA) 8 units
B) 5 units
C) 3 units
D) None of these
View Answer play_arrowquestion_answer17) The distance between two parallel lines \[3x+4y+10=0\] and \[3x+4y-10=0\] is
A) 0
B) \[-4\sqrt{5}\]
C) \[2\sqrt{5}\]
D) 4
View Answer play_arrowA) \[30{}^\circ \]
B) \[45{}^\circ \]
C) \[60{}^\circ \]
D) \[75{}^\circ \]
View Answer play_arrowquestion_answer19) The graphs of\[2x+3y-6=0,4x-3y-6=0,\] \[x=2\] and \[y=\frac{2}{3}\] intersect in
A) four points
B) one point
C) in no points
D) infinite number of points
View Answer play_arrowA) \[\frac{3a}{4}\]
B) \[\frac{3a}{2}\]
C) \[\frac{1}{2}a\]
D) \[a\]
View Answer play_arrowA) 3 or 4
B) - 4 or - 2
C) - 4 or 2
D) 4 or - 2
View Answer play_arrowA) 3 or -9
B) 3 or 9
C) -3 or 9
D) -3 or -9
View Answer play_arrowA) (0, - 2) and (0, - 14)
B) (0, 2) and (0, 14)
C) (0, 2) and (O, - 14)
D) None of these
View Answer play_arrowquestion_answer24) The slope of the line joining the points (-8, - 3) and (8, 3) is
A) \[\frac{8}{3}\]
B) \[\frac{3}{8}\]
C) 0
D) - 1
View Answer play_arrowA) 7
B) 14
C) \[\sqrt{65}\]
D) \[\sqrt{33}\]
View Answer play_arrowquestion_answer26) What are the coordinates of the point of intersection of the two axes?
A) (1,1)
B) (0,0)
C) (-1,1)
D) (-1,-1)
View Answer play_arrowA) (0,4)
B) (0,2)
C) \[\left( -1,1 \right)\]
D) \[\left( 0,\frac{1}{2} \right)\]
View Answer play_arrowA) (2, 5)
B) (-2, 5)
C) (3, 5)
D) (4, 6)
View Answer play_arrowquestion_answer29) The equation of the straight line which is perpendicular to \[7x-8y=6\] is
A) \[8x\text{ }+\text{ 7y }=\text{ 3}\]
B) \[7x+8\text{y}=\text{3}\]
C) \[8x-\text{7y}=\text{3}\]
D) \[7x-8\text{y}=\text{3}\]
View Answer play_arrowA) \[\left( \frac{3}{2},\frac{3\sqrt{3}}{2} \right)or\left( \frac{3}{2},\frac{-3\sqrt{3}}{2} \right)\]
B) \[\left( \frac{1}{2},\sqrt{2} \right)or\left( \frac{1}{2},-\sqrt{2} \right)\]
C) \[\left( \frac{1}{3},1 \right)or\left( \frac{1}{3},-1 \right)\]
D) none of these
View Answer play_arrowA) scalene
B) equilateral
C) isosceles
D) right triangle
View Answer play_arrowA) (1,1)
B) (-1,-1)
C) (2,-2)
D) (3,3)
View Answer play_arrowA) \[{{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}=0\]
B) \[{{a}_{1}}{{a}_{2}}-{{b}_{1}}{{b}_{2}}=0\]
C) \[{{a}_{1}}{{b}_{2}}+{{a}_{2}}{{b}_{1}}=0\]
D) \[{{a}_{1}}{{a}_{2}}+{{b}_{1}}{{b}_{2}}=0\]
View Answer play_arrowA) (3, 7)
B) (3, - 7)
C) \[\left( \text{l},-\text{4} \right)\]
D) \[\left( \text{l},\text{4} \right)\]
View Answer play_arrowA) (2, 1)
B) (3, 1)
C) (-2,-\[\frac{5}{3}\])
D) None of these
View Answer play_arrowA) 5 : 2
B) 5 : 1
C) 2 : 5
D) 3 : 2
View Answer play_arrowA) \[\left( -\text{3},-\text{7} \right),\text{ }\left( \text{17},\text{ 9} \right),\text{ }\left( \text{1},\text{1} \right)\]
B) \[\left( -\text{3}.\text{ 7} \right),\text{ }\left( \text{7},\text{ 9} \right),\text{ }\left( -\text{ 1},\text{ 1} \right)\]
C) \[\left( -\text{3},-\text{7} \right),\text{ }\left( \text{7},\text{ 9} \right),\text{ }\left( \text{1},\text{1} \right)\]
D) none
View Answer play_arrowA) (- 4, - 15)
B) (4, - 15)
C) (-4, 15)
D) (2 ,3)
View Answer play_arrowA) 1: 2
B) 1: 3
C) 3:2
D) None of these
View Answer play_arrowquestion_answer40) The point which is equal-distant from the points (0, 0), (0, 8) and (4, 6) is
A) \[\left( \frac{1}{2},-4 \right)\]
B) \[\left( -\frac{1}{2},4 \right)\]
C) \[\left( \frac{1}{2},4 \right)\]
D) \[\left( -\frac{1}{2},-4 \right)\]
View Answer play_arrowquestion_answer41) The centroid of the triangle whose vertices are (4, - 8), (-9, 7) and (8,13) is
A) (1, 4)
B) (1,3)
C) (1, 5)
D) (1, 9)
View Answer play_arrowA) a = 2, b = - 2
B) a = b = 2
C) a = 1 = b
D) a = -2, b = 2
View Answer play_arrowA) (8, 0) and (0, - 6)
B) (0, 8) and (0, - 6)
C) (8, 0) and (-6, 0)
D) None of these
View Answer play_arrowA) 3 sq. units
B) - 3 sq. units
C) 2 sq. units
D) 1 sq. unit
View Answer play_arrowA) 4
B) 5
C) 7
D) 3
View Answer play_arrowA) 2
B) 1
C) 3
D) 4
View Answer play_arrowquestion_answer47) The gradient of the straight line \[3x+4y=5\]is
A) \[\frac{3}{4}\]
B) \[-\frac{4}{3}\]
C) \[\frac{4}{3}\]
D) \[-\frac{3}{4}\]
View Answer play_arrowA) \[~x-\text{ y }=\text{ 1}\]
B) \[~x~-\text{y }=\text{ 5}\]
C) \[~x\text{y }=\text{ 1}\]
D) \[~x~+\text{ y }=\text{ 5}\]
View Answer play_arrowA) \[8x+7\text{y }=3\]
B) \[7x+8\text{y }=3\]
C) \[8x-7\text{y }=3\]
D) \[7x-8\text{y }=3\]
View Answer play_arrowquestion_answer50) The length of the line segment whose end points are (3,-1) and (6, 5) is
A) 3
B) 5
C) \[3\sqrt{5}\]
D) \[5\sqrt{3}\]
View Answer play_arrowquestion_answer51) In the given figure co-ordinates of the midpoint of AB are
A) (0, 2)
B) (0,3)
C) (1' 2)
D) (3, 1)
View Answer play_arrowquestion_answer52) Slope of the line that passes through points (0, -2) and (3, 0) is
A) \[-\frac{3}{2}\]
B) \[-\frac{2}{3}\]
C) 0
D) \[\frac{2}{3}\]
View Answer play_arrowA) k = - 4 and p = 0
B) k = 0 and p = - 4
C) k = -2 and p = 0
D) k = 0 and p = -2
View Answer play_arrowquestion_answer54) Which of the following is a point on the graph of \[3x-2y=4?\]
A) (0, 2)
B) \[\left( \text{1},\text{ 4} \right)\]
C) (2, 0)
D) \[\left( \text{2},\text{ 1} \right)\]
View Answer play_arrowquestion_answer55) The slope of the line shown in the given figure
A) 2
B) 1
C) -1
D) - 2
View Answer play_arrowA) \[4\pi +8\]
B) \[8\pi +4\]
C) \[8\pi +8\]
D) \[16\pi +4\]
View Answer play_arrowA) -2
B) -1
C) 1
D) 2
View Answer play_arrowquestion_answer58) Area of the rectangle whose vertices are (-2 5) (8, 5), (8,-2) and (-2,-2) is
A) 45
B) 50
C) 55
D) 70
View Answer play_arrowquestion_answer59) In the given figure, which of the following points lies within the circle?
A) (3.5, 9.5)
B) \[(-7,7)\]
C) (-10,1)
D) \[(-10,1)\]
View Answer play_arrowA) 32
B) 48
C) 72
D) 96
View Answer play_arrowquestion_answer61) Which of the following lines has the same Y -intercept as \[y=\frac{x}{2}-3\]?
A) \[\text{x }+\text{ 2 }=\text{ 3y}\]
B) \[\text{y}+\text{3}=\text{x}+\text{2}\]
C) \[\text{y}+\text{3}=\text{2x}\]
D) \[\frac{\text{y}}{2}=\text{x-3}\]
View Answer play_arrowquestion_answer62) In the given figure, if the slope of line 1 is m, then m in terms of h is
A) \[\frac{h}{1+h}\]
B) \[\frac{-h}{1+h}\]
C) \[\frac{h}{1-h}\]
D) \[1+h\]
View Answer play_arrowA) \[-\frac{4}{5}\]
B) \[\frac{5}{4}\]
C) \[\frac{4}{5}\]
D) \[-\frac{5}{4}\]
View Answer play_arrowquestion_answer64) The area of a triangle whose vertices are (-4, 0), (2, 4) and (4, 0) is
A) 8
B) 12
C) 16
D) 32
View Answer play_arrowA) 20
B) 24
C) 28
D) 30
View Answer play_arrowquestion_answer66) Area of the circle shown with its center at origin is
A) \[5\,\pi \]
B) \[15\,\pi \]
C) \[25\,\pi \]
D) \[50\,\pi \]
View Answer play_arrowA) \[10\,\pi \]
B) \[13\,\pi \]
C) \[24\,\pi \]
D) \[26\,\pi \]
View Answer play_arrowquestion_answer68) In the figure given, area of the shaded region is
A) 1
B) \[\frac{3}{2}\]
C) 2
D) \[\frac{5}{2}\]
View Answer play_arrowA) (1, 10)
B) (4, 7)
C) (7,7)
D) (9, V19)
View Answer play_arrowA) \[\frac{25}{4}\]
B) \[\frac{25}{4}(\sqrt{2}+1)\]
C) \[\frac{25}{2\sqrt{2}}\]
D) \[\frac{25}{2}\]
View Answer play_arrowA) 7
B) 9
C) 12
D) 15
View Answer play_arrowA) \[y=2x+1\]
B) \[y=x+1\]
C) \[y=\frac{1}{2}x-2\]
D) \[y=x-1\]
View Answer play_arrowA) (-2, 12)
B) \[(-16,8)\]
C) (-6,-2)
D) (4 , 8)
View Answer play_arrowA) \[y=2x+6\]
B) \[y=2x-6\]
C) \[y=2x+3\]
D) \[y=2x+4\]
View Answer play_arrowA) \[\sqrt{2}\]
B) 1
C) \[\frac{\sqrt{2}}{2}\]
D) \[\frac{1}{2}\]
View Answer play_arrowYou need to login to perform this action.
You will be redirected in
3 sec