11th Class Physics Physical World / भौतिक जगत Question Bank 11th CBSE Physics Mathematical Tools, Units & Dimensions

  • question_answer
    Reynold number (R) determines whether or not the flow of a liquid through a pipe is streamlined. This constant is a combination of velocity (v), density \[\left( \rho  \right)\] and coefficient of viscosity \[\left( \eta  \right)\]. Given that R varies directly as diameter D of the pipe, derive the formula for R using the method of dimensions.

    Answer:

                    Let            \[\text{R}=\text{K}{{\upsilon }^{\text{a}}}{{\rho }^{\text{b}}}{{\eta }^{\text{c}}}{{\text{D}}^{\text{1}}}\]                                                                                 ...(i) where K is a dimensionless constant of proportionality and a, b, c and 1 are the respective powers of                                                                                                         \[\upsilon\] ,                                                                                                             \[\rho\] ,                                                                                                             \[\eta\]  and D to define R Writing the dimensions of various quantities in (16), we get \[{{\text{M}}^{0}}{{\text{L}}^{0}}{{\text{T}}^{0}}={{\left[ \text{L}{{\text{T}}^{-\text{1}}} \right]}^{\text{a}}}{{\left[ \text{M}{{\text{L}}^{-\text{3}}} \right]}^{\text{b}}}{{\left[ \text{M}{{\text{L}}^{-\text{1}}}{{\text{T}}^{-\text{1}}} \right]}^{\text{c}}}{{\text{L}}^{\text{1}}}={{\text{M}}^{\text{b}+\text{c}}}{{\text{L}}^{\text{a}-\text{3b}-\text{c}+\text{1}}}{{\text{T}}^{-\text{a}-\text{c}}}\] Applying the principle of homogeneity of dimensions, we get                                                                                              \[\text{b}+\text{c}=0\]                                                                                                 .....(ii)                                                                           \[\text{a}-\text{3b}-\text{c}+\text{1}=0\]                                                                                 ...(iii)                                                                                             \[-\text{ a}-\text{c}=0\]                                                                                                 ...(iv) From (ii),                                                                                                \[\text{b}=-\text{c}\] , From (iv),                                                                                                \[\text{a}=-\text{c}\] . Put in (iii),                                  \[-\text{c}\text{3}\left( -\text{c} \right)-\text{c}+\text{1}=0\]                                                                                              \[\text{c}+\text{1}=0\] or                                                                                                \[\text{c}=-\text{1}\]                                                                                                       \[\therefore\]                                                        \[\text{a}=-\text{c}=+\text{1},\text{b}=-\text{c}=+\text{1}\] Putting these values in (i), we get          \[\text{R}=\text{K }{{\upsilon }^{\text{1}}}{{\rho }^{\text{1}}}{{\eta }^{-\text{1}}}{{\text{D}}^{\text{1}}}\]                                                                    \[\text{R}=\text{K}\frac{v\rho D}{\eta }\text{ }\] This is the required relation. Note that the above question, R depends on four factors having dimensions. The relation for R cannot be derived ordinarily. The dependence of R on any one of the factors must be known/given, as in this question\[R\propto {{D}^{1}}\] is given.


You need to login to perform this action.
You will be redirected in 3 sec spinner