# 7th Class Mathematics Congruence of Triangles Question Bank

### done Congruence of Triangles

• A) S.A.S. property

B) S.S.S. property

C) R.H.S. property

D) A.S.A, property

• A) They should be drawn with a scale.

B) They should be drawn on the same sheet of paper.

C) They should have different lengths.

D) They should have the same length.

• A) $AB=AD$

B) $AB=DC$

C) $BC=CD$

D) $AC=AD$

• A) S.S.S. property

B) S.A.S. property

C) A.S.A. property

D) R.H.S. property

•  A: Two triangles are said to be congruent if two sides and an angle of one triangle are respectively equal to the two sides and an angle of the other. R: Two triangles are congruent if two sides and the included angle of one are equal to the corresponding two sides and included angle of the other.
Given A & R, which of the following statements is correct?

A) A is false and R is the correct explanation of A.

B) A is true and R is the correct explanation of A.

C) A is true and R is false.

D) A is false and R is true.

• A) $\Delta PQR$ is smaller than $\Delta DFE$.

B) $\Delta PQR$ is larger than $\Delta DFE$.

C) $\Delta PQR$ is congruent to $\Delta DFE$.

D) $\Delta PQR$ is not congruent to $\Delta DFE$.

• A) Trial and error method

B) Superposition method

C) Substitution method

D) Transposition method

• A) A regular pentagon and a regular hexagon.

B) A rhombus and a square.

C) Two equilateral triangles of the same length of their sides.

D) A quadrilateral and a rectangle.

• A)

 PQ QR RP x cm y cm z cm

B)

 PQ QR RP y cm x cm z cm

C)

 PQ QR RP x cm z cm y cm

D)

 PQ QR RP z cm x cm y cm

• A) $\angle ADB=\angle CDB,\angle ABD=\angle CBD;\,\,BD=BD$

B) $AD=AB,\text{ }DC=CB,\text{ }BD=BD$

C) $AB=CD,AD=BC,BD=BD$

D) $\angle ADB=\angle CDB,\angle ABD=\angle CBD;\,\,\angle DAB=\angle DBC$

• A) $\Delta ABC$ and $\Delta \,CBD$ are isosceles triangles.

B) BD bisects $\angle ADC$

C) BD bisects $\angle BAD$

D) $\Delta ABC$ and $\Delta CBD$ are equilateral triangles.

• A) $\Delta ADB\cong \Delta ABC$

B) $\Delta ADC\cong \Delta ABC$

C) $\angle B=\angle C$

D) $\angle ABC=\angle CAB$

• A) R.H.S. property

B) S.S.S. property

C) S.A.S. property

D) A.S.A. property

• A) TR and PE

B) AR and PEA

C) AT and EN

D) AR and PN

• A) $AB=EF,\text{ }\angle B=\angle E$ and $\angle C=\angle F$

B) $BC=EF,\text{ }\angle B=\angle E$ and $\angle C=\angle F$

C) $AC=EF,\text{ }\angle B=\angle D$ and $\angle C=\angle F$

D) $AC=DE,\text{ }\angle B=\angle D$ and $\angle C=\angle F$

• A) The measure of AB.

B) The measure of CD.

C) The measure of BC.

D) $AC=BD$

• A) A.S.A. criterion

B) R.H.S. criterion

C) A.A.A. criterion

D) S.S.S. criterion

• A) One triangle is an enlarged copy of other.

B) The two triangles are necessarily congruent.

C) The two triangles are congruent by A.A.A. congruency criterion.

D) All of the above.

•  Direction: $\Delta ABC$ is congruent to $\Delta PQR$ under the correspondence $ABC\overset{{}}{\longleftrightarrow}RQP$.
Which part corresponds to PQ?

A) $\overline{CB}$

B) $\overline{AC}$

C) $\overline{QR}$

D) $\overline{AB}$

•  Direction: $\Delta ABC$ is congruent to $\Delta PQR$ under the correspondence $ABC\overset{{}}{\longleftrightarrow}RQP$.
Which part of corresponds to RP?

A) $\overline{AB}$

B) $\overline{AC}$

C) $\overline{CA}$

D) $\overline{BC}$

• A) ${{80}^{o}},{{60}^{o}}$

B) ${{60}^{o}},{{40}^{o}}$

C) ${{80}^{o}},{{40}^{o}}$

D) ${{60}^{o}},{{80}^{o}}$

• A) $10,\,3$

B) $10,\,8$

C) $8,\,3$

D) $3,\,10$

• A) ${{70}^{o}}$

B) ${{50}^{o}}$

C) ${{130}^{o}}$

D) ${{60}^{o}}$

• A) $\angle QPR=\angle PRS$

B) $\angle RPS=\angle RQP$

C) $\angle QRP=\angle SRP$

D) $\overline{PR}=\overline{RS}$

• A) $\angle OBA=\angle OCA$

B) $\angle AOC=\angle OCA$

C) $AO=AC$

D) $AB=OC$

• A) $\Delta ABF\cong \Delta EDF$

B) $\Delta FDC\cong \Delta FCB$

C) $\Delta ABF\cong \Delta FBC$

D) $\Delta FDC\cong \Delta BCF$

• A) S.S.S. condition

B) S.A.S. condition

C) R.H.S. condition

D) A.S.A. condition.

• A) $\Delta AOB\cong \Delta DOC$

B) $\Delta AOB\cong \Delta ODC$

C) $\Delta BOA\cong \Delta DOC$

D) $\Delta BAO\cong \Delta COD$

• A) $\Delta ADC\cong \Delta ADB$

B) $\Delta ADB\cancel{\cong }\Delta ADB$

C) $\Delta ADB\cong \Delta ABC$

D) $\Delta ABC\cong \Delta ADC$

• A) A.S.A.

B) S.S.S.

C) S.A.S.

D) R.H.S.

• A) $\angle CAE=\angle BAD$

B) $\Delta ACE=\Delta ABD$

C) $\Delta AEC=\Delta ABD$

D) $BE=DC$

• A) R.H.S.

B) S.A.S.

C) S.S.S.

D) A.S.A.

• A) $\Delta XYZ\cong \Delta LMN$

B) $YZ=LM$

C) $XY=MN$

D) $XZ=LM$

• A) The corresponding sides of congruent triangles are equal.

B) The corresponding angles of congruent triangles are equal.

C) Two triangles cannot be congruent.

D) There are four congruency conditions for congruence of triangles.

• A) S.S.S. property

B) S.A.S. property

C) A.S.A. property

D) R.H.S. property

• A) S.S.S. property

B) S.A.S. property

C) A.S.A. property

D) R.H.S. property

• A) $\angle ABC=\angle PQR,$ $a=p,\,\,c=r$

B) $\angle CAB=\angle RPQ,\angle ABC=\angle PQR,c=r$

C) $b=q,\,\,\angle CAB=\angle RPQ,\,\,a=p$

D) $a=p,\,c=r,\,\angle ABC=\angle PQR$

• A) Two Rs. 1 coins

B) A Rs. 1 coin and a Rs. 2 coin

C) A Rs. 2 coin and a Rs. 5 coin

D) A Rs. 5 coin and a Rs. 10 coin

• A) Naming the angles of the triangles using capital letters.

B) Measures of angles in degrees.

C) The order of letters of the triangles.

D) Exact length of the sides of the triangles.

• A) $\Delta QPR\cong \Delta SPR$

B) $\Delta PSR\cong \Delta RQP$

C) $\Delta PRS\cong \Delta QPR$

D) $\Delta QRP\cong \Delta PSR$

• A) The triangles are small.

B) The triangles are congruent.

C) The triangles are equilateral.

D) The triangles are equiangular.

• A) $\Delta ABC:\angle B={{50}^{o}},BC=5cm,$ and $AB=7cm.$ $\Delta DEF:\angle E={{50}^{0}},EF=7cm,$and$DE=5cm.$

B) $\Delta ABC:BC=6cm,$ $AC=4\,\,cm$ and $\angle B={{35}^{o}}$ $\Delta DEF:DF=4\,cm,$ $EF=6\,cm$ and $\angle D={{55}^{o}}$

C) $\Delta ABC:AB=4.5cm,$$AC=4cm$and$\angle A={{60}^{o}}$ $\Delta DEF:DE=4cm,FD=4.5cm$and$\angle D={{55}^{o}}$

D) Either [b] or [c]

• A) $\Delta ABC\cong \Delta ADC$

B) $\Delta ABD\cong \Delta ACD$

C) $\Delta ADB\cong \Delta ACD$

D) $\Delta ADC\cong \Delta ABD$