JEE Main & Advanced Mathematics Complex Numbers and Quadratic Equations Question Bank De Moivre's theorem and Roots of unity

  • question_answer
    The value of expression \[\left( \cos \frac{\pi }{2}+i\sin \frac{\pi }{2} \right)\] \[\,\left( \cos \frac{\pi }{{{2}^{2}}}+i\sin \frac{\pi }{{{2}^{2}}} \right)\]........to \[\infty \] is    [Kurukshetra CEE 1998]

    A) \[-1\]

    B)  \[1\]

    C) 0

    D) 2

    Correct Answer: A

    Solution :

    \[\left( \cos \frac{\pi }{2}+i\sin \frac{\pi }{2} \right)\,\,\left( \cos \frac{\pi }{{{2}^{2}}}+i\sin \frac{\pi }{{{2}^{2}}} \right).....\]to \[\infty \] \[=\cos \left( \frac{\pi }{2}+\frac{\pi }{{{2}^{2}}}+..... \right)+i\sin \left( \frac{\pi }{2}+\frac{\pi }{{{2}^{2}}}+.... \right)\] \[=\cos \frac{\pi }{2}\left( 1+\frac{1}{2}+\frac{1}{{{2}^{2}}}+..... \right)+i\sin \frac{\pi }{2}\left( 1+\frac{1}{2}+\frac{1}{{{2}^{2}}}+..... \right)\] \[=\cos \frac{\pi }{2}\left( \frac{1}{1-\frac{1}{2}} \right)+i\sin \frac{\pi }{2}\left( \frac{1}{1-\frac{1}{2}} \right)=\cos +i\sin \pi =-1\]


You need to login to perform this action.
You will be redirected in 3 sec spinner