JEE Main & Advanced Mathematics Complex Numbers and Quadratic Equations Question Bank De Moivre's theorem and Roots of unity

  • question_answer
    \[\frac{{{(-1+i\sqrt{3})}^{15}}}{{{(1-i)}^{20}}}+\frac{{{(-1-i\sqrt{3})}^{15}}}{{{(1+i)}^{20}}}\] is equal to [AMU 2000]

    A) - 64

    B) - 32

    C) - 16

    D) \[\frac{1}{16}\]

    Correct Answer: A

    Solution :

    \[{{2}^{15}}\left[ \frac{{{\left( -\frac{1}{2}+\frac{i\sqrt{3}}{2} \right)}^{15}}}{{{(1-i)}^{20}}}+\frac{{{\left( \frac{-1}{2}-\frac{i\sqrt{3}}{2} \right)}^{15}}}{{{(1+i)}^{20}}} \right]\] = \[{{2}^{15}}\left[ \frac{{{\omega }^{15}}}{{{(1-i)}^{20}}}+\frac{{{\omega }^{30}}}{{{(1+i)}^{20}}} \right]\]=\[{{2}^{15}}\left[ \frac{1}{{{(1-i)}^{20}}}+\frac{1}{{{(1+i)}^{20}}} \right]\] = \[{{2}^{15}}\left[ \frac{{{(1+i)}^{20}}+{{(1-i)}^{20}}}{{{(1-{{i}^{2}})}^{20}}} \right]\]=\[\frac{{{2}^{15}}}{{{2}^{20}}}[{{(1+i)}^{20}}+{{(1-i)}^{20}}]\] = \[\frac{1}{{{2}^{5}}}[{{(i-{{i}^{2}})}^{20}}+{{(1-i)}^{20}}]\] = \[\frac{1}{{{2}^{5}}}({{i}^{20}}+1)\,{{(1-i)}^{20}}\] \[=\frac{2}{{{2}^{5}}}{{(1-i)}^{20}}\] = \[\frac{1}{{{2}^{4}}}{{(1-i)}^{20}}\]= \[\frac{1}{{{2}^{4}}}{{[{{(1-i)}^{2}}]}^{10}}\] \[=\frac{1}{{{2}^{4}}}{{[1+{{i}^{2}}-2i]}^{10}}\]=\[\frac{1}{{{2}^{4}}}{{(-2i)}^{10}}\] = \[\frac{{{(-2)}^{10}}{{i}^{10}}}{{{2}^{4}}}=-{{2}^{6}}=-64\].


You need to login to perform this action.
You will be redirected in 3 sec spinner