JEE Main & Advanced Mathematics Complex Numbers and Quadratic Equations Question Bank De Moivre's theorem and Roots of unity

  • question_answer
    If \[{{\tan }^{-1}}(\alpha +i\beta )=x+iy,\] then x = [RPET 2002]

    A) \[\frac{1}{2}{{\tan }^{-1}}\left( \frac{2\alpha }{1-{{\alpha }^{2}}-{{\beta }^{2}}} \right)\]

    B) \[\frac{1}{2}{{\tan }^{-1}}\left( \frac{2\alpha }{1+{{\alpha }^{2}}+{{\beta }^{2}}} \right)\]

    C) \[{{\tan }^{-1}}\left( \frac{2\alpha }{1-{{\alpha }^{2}}-{{\beta }^{2}}} \right)\]

    D) None of these

    Correct Answer: A

    Solution :

    \[{{\tan }^{-1}}(\alpha +i\beta )=x+iy\] \[\Rightarrow \] \[\alpha +i\beta =\tan (x+iy)\] ?..(i) Taking conjugate, \[\Rightarrow \] \[(\alpha -i\beta )=\tan (x-iy)\] ?..(ii) \[\Rightarrow \] \[\tan 2x=\tan [(x+iy)+(x-iy)]\] \[\therefore \,\,\tan 2x=\frac{(\alpha +i\beta )+(\alpha -i\beta )}{1-(\alpha +i\beta )\,\,(\alpha -i\beta )}=\frac{2\alpha }{1-({{\alpha }^{2}}+{{\beta }^{2}})}\] \[\therefore \,x=\frac{1}{2}{{\tan }^{-1}}\left( \frac{2\alpha }{1-{{\alpha }^{2}}-{{\beta }^{2}}} \right)\].


You need to login to perform this action.
You will be redirected in 3 sec spinner