question_answer1) If \[X=\{{{8}^{n}}-7n-1:n\in N\}\] and \[Y=\{49(n-1):n\in N\},\] then
A) \[X\subseteq Y\]
B) \[Y\subseteq X\]
C) \[X=Y\]
D) None of these
View Answer play_arrowquestion_answer2) If \[{{N}_{a}}=\{an:n\in N\},\] then \[{{N}_{3}}\cap {{N}_{4}}=\]
A) \[{{N}_{7}}\]
B) \[{{N}_{12}}\]
C) \[{{N}_{3}}\]
D) \[{{N}_{4}}\]
View Answer play_arrowA) 3
B) 6
C) 9
D) 18
View Answer play_arrowA) One point
B) Three points
C) Two points
D) Four points
View Answer play_arrowA) \[\bar{A}\cap B\]
B) \[A\cap \bar{B}\]
C) \[\bar{A}\cap \bar{B}\]
D) \[\overline{A\cap B}\]
View Answer play_arrowA) {(2, 4), (3, 4)}
B) {(4, 2), (4, 3)}
C) {(2, 4), (3, 4), (4, 4)}
D) {(2,2), (3,3), (4,4), (5,5)}
View Answer play_arrowA) At least 30
B) At most 20
C) Exactly 25
D) None of these
View Answer play_arrowA) 18
B) 6
C) 4
D) 0
View Answer play_arrowA) {(1,2), (3,1), (1,3), (1,5)}
B) {(1, 2), (3, 1), (2, 1)}
C) {(1, 2), (5, 1), (3, 1)}
D) None of these
View Answer play_arrowA) Reflexive and Symmetric
B) Symmetric only
C) Transitive only
D) Anti-symmetric only
View Answer play_arrowA) Symmetric only
B) Equivalence relation
C) Reflexive only
D) None of these
View Answer play_arrowA) Reflexive and symmetric
B) Transitive and symmetric
C) Equivalence
D) Reflexive, transitive but not symmetric
View Answer play_arrowA) R and S are transitive \[\Rightarrow \text{ }R\text{ }\cup \text{ }S\] is transitive
B) R and S are transitive \[\Rightarrow \text{ }R\text{ }\cap \text{ }S\] is transitive
C) R and S are symmetric \[\Rightarrow \text{ }R\text{ }\cup \text{ }S\] is symmetric
D) R and S are reflexive \[\Rightarrow \text{ }R\text{ }\cap \text{ }S\] is reflexive
View Answer play_arrowA) {(1, 1), (4, 4), (4, 7), (7, 4), (7, 7), (3, 3)}
B) {(1, 1), (4, 4), (7, 7), (3, 3)}
C) {(1, 5), (1, 6), (3, 6)}
D) None of these
View Answer play_arrowA) Reflexive
B) Symmetric
C) Transitive
D) None of these
View Answer play_arrowYou need to login to perform this action.
You will be redirected in
3 sec