JEE Main & Advanced Mathematics Binomial Theorem and Mathematical Induction Question Bank Properties of binomial coefficients

  • question_answer
    The sum to \[(n+1)\] terms of the following series \[\frac{{{C}_{0}}}{2}-\frac{{{C}_{1}}}{3}+\frac{{{C}_{2}}}{4}-\frac{{{C}_{3}}}{5}+\]..... is

    A) \[\frac{1}{n+1}\]

    B) \[\frac{1}{n+2}\]

    C) \[\frac{1}{n(n+1)}\]

    D) None of these

    Correct Answer: D

    Solution :

    \[{{(1-x)}^{n}}={{C}_{0}}-{{C}_{1}}x+{{C}_{2}}{{x}^{2}}-{{C}_{3}}{{x}^{3}}+.....\] Þ \[x\,\,{{(1-x)}^{n}}={{C}_{0}}x-{{C}_{1}}{{x}^{2}}+{{C}_{2}}{{x}^{3}}-{{C}_{3}}{{x}^{4}}+.....\]  Þ \[\int\limits_{0}^{1}{x}{{(1-x)}^{n}}dx=\int\limits_{0}^{1}{({{C}_{0}}x-{{C}_{1}}{{x}^{2}}+{{C}_{2}}{{x}^{3}}....)dx}\]  ?...(i) The integral on the LHS \[=\int\limits_{1}^{0}{(1-t){{t}^{n}}(-dt),}\]by putting \[1-x=t\] \[=\int\limits_{0}^{1}{({{t}^{n}}-{{t}^{n+1}})}\,dt=\frac{1}{n+1}-\frac{1}{n+2}\] Whereas the integral on the RHS of (i) \[=\left[ \frac{{{C}_{0}}{{x}^{2}}}{2}-\frac{{{C}_{1}}{{x}^{3}}}{3}+\frac{{{C}_{2}}{{x}^{4}}}{4}-.... \right]\]\[=\frac{{{C}_{0}}}{2}-\frac{{{C}_{1}}}{3}+\frac{{{C}_{2}}}{4}-....\] \[\therefore \,\,\,\,\frac{{{C}_{0}}}{2}-\frac{{{C}_{1}}}{3}+\frac{{{C}_{2}}}{4}-....\]to \[(n+1)\] terms \[=\frac{1}{n+1}-\frac{1}{n+2}=\frac{1}{(n+1)(n+2)}\].


You need to login to perform this action.
You will be redirected in 3 sec spinner