AMU Medical AMU Solved Paper-1999

  • question_answer
    A slab of thickness\[{{d}_{1}}\]and coefficient of thermal conductivity\[{{K}_{1}}\]. is placed in contact with another slab of thickness\[{{d}_{2}}\]and coefficient of thermal conductivity\[{{K}_{2}}\]. In steady state, the conductivity of composite slab will be

    A)  \[\frac{{{d}_{1}}+{{d}_{2}}}{{{K}_{1}}+{{K}_{2}}}\]

    B)  \[\frac{{{K}_{1}}{{K}_{2}}}{{{K}_{1}}{{d}_{2}}+{{K}_{2}}{{d}_{1}}}\]

    C)  \[\frac{{{K}_{1}}{{d}_{1}}+{{K}_{2}}{{d}_{2}}}{{{d}_{1}}+{{d}_{2}}}\]

    D)  \[\frac{{{d}_{1}}+{{d}_{2}}}{\left( \frac{{{d}_{1}}}{{{K}_{1}}}+\frac{{{d}_{2}}}{{{K}_{2}}} \right)}\]

    Correct Answer: D

    Solution :

    : Let\[\theta =\]temperature of common interface of the two slabs. \[\therefore \] \[Q=\frac{{{K}_{1}}A({{\theta }_{1}}-\theta )t}{{{d}_{1}}}\]for\[{{1}^{st}}\]slab Also \[Q=\frac{{{K}_{2}}A(\theta -{{\theta }_{2}})t}{{{d}_{2}}}\]second slab \[\therefore \] \[{{\theta }_{1}}-\theta =\frac{Q{{d}_{1}}}{{{K}_{1}}At}\] \[\theta -{{\theta }_{2}}=\frac{Q{{d}_{1}}}{{{K}_{2}}At}\] Or \[({{\theta }_{1}}-{{\theta }_{2}})=\frac{Q{{d}_{1}}}{{{K}_{1}}At}+\frac{Q{{d}_{2}}}{{{K}_{2}}At}\] Or \[({{\theta }_{1}}-{{\theta }_{2}})=\frac{Q}{At}\left( \frac{{{d}_{1}}}{{{K}_{1}}}+\frac{{{d}_{2}}}{{{K}_{2}}} \right)\] ?..(i) For composite slab of thickness \[({{d}_{1}}+{{d}_{2}}),\] \[({{\theta }_{1}}-{{\theta }_{2}})=\frac{Q}{Qt}\left( \frac{{{d}_{1}}+{{d}_{2}}}{K} \right)\] ?.(ii) \[\therefore \] \[\frac{({{d}_{1}}+{{d}_{2}})}{K}=\frac{{{d}_{1}}}{{{K}_{1}}}+\frac{{{d}_{2}}}{{{K}_{2}}}\] Or \[K=\frac{({{d}_{1}}+{{d}_{2}})}{\left( \frac{{{d}_{1}}}{{{K}_{1}}}+\frac{{{d}_{2}}}{{{K}_{2}}} \right)}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner