BCECE Engineering BCECE Engineering Solved Paper-2003

  • question_answer
    A magnetic needle suspended in a vertical plane at \[30{}^\circ \] from the magnetic meridian makes an angle \[45{}^\circ \] with the horizontal. What will be the true angle of dip?

    A) \[{{\tan }^{-1}}\left( \frac{\sqrt{3}}{2} \right)\]                 

    B)         \[{{\tan }^{-1}}(\sqrt{3})\]

    C)        \[{{45}^{0}}\]                                    

    D)        \[{{30}^{0}}\]

    Correct Answer: A

    Solution :

    Let \[{{B}_{e}}\]be the magnetic field at some point. H and V be the horizontal and vertical components of \[{{B}_{e}}\]and \[\theta \] is the actual angle of dip at the same place. \[H=B{{}_{e}}\cos \theta \] and        \[V={{B}_{e}}\sin \theta \] \[\therefore \]  \[\frac{V}{H}=\tan \theta \] or            \[\tan \theta =\frac{V}{H}\]                        ?(i) In a vertical plane at \[{{30}^{o}}\] from the magnetic meridian, the horizontal component is                                 \[H=H\cos {{30}^{o}}=\frac{H\sqrt{3}}{2}\] While vertical component is still V. Therefore, apparent dip will be given by                 \[\tan \theta =\frac{V}{H}=\frac{V}{H\sqrt{3}/2}=\frac{2V}{H\sqrt{3}}\]                ?(ii)                 Dividing Eq.(i) by Eq.(ii),we have                 \[\frac{\tan \theta }{\tan \theta }=\frac{\frac{V}{H}}{\frac{2V}{H\sqrt{3}}}=\frac{\sqrt{3}}{2}\]                 or            \[\tan \theta =\frac{\sqrt{3}}{2}\tan \theta \]                                 \[=\frac{\sqrt{3}}{2}\tan {{45}^{o}}\]      \[(\because \,\theta ={{45}^{o}})\]                                 \[=\frac{\sqrt{3}}{2}\]                 \[\therefore \]  \[\theta ={{\tan }^{-1}}\left( \frac{\sqrt{3}}{2} \right)\]


You need to login to perform this action.
You will be redirected in 3 sec spinner