BCECE Engineering BCECE Engineering Solved Paper-2005

  • question_answer
    \[\int_{0}^{\pi /2}{|\sin x-\cos x|}\,dx\] is equal to:

    A) \[2(\sqrt{2}+1)\]  

    B)         \[\sqrt{2}-1\]       

    C)         \[2(\sqrt{2}-1)\]  

    D)         0

    Correct Answer: C

    Solution :

    Let          \[I=\int_{0}^{\pi /2}{|\sin x-\cos x|}dx\] \[=\int_{0}^{\pi /4}{(\cos x-\sin x)}dx\] \[+\int_{\pi /4}^{\pi /2}{(\sin x-\cos x)dx}\]                 \[=[\sin x+\cos x]_{0}^{\pi /4}+[-\cos x-\sin x]_{\pi /4}^{\pi /2}\]                 \[=\left[ \frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-(1) \right]+\left[ 0-1\left( -\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}} \right) \right]\]                 \[=[\sqrt{2}-1-1+\sqrt{2}]=2(\sqrt{2}-1)\]                 Alternate Solution:                 Let          \[I=\int_{0}^{\pi /2}{|\sin x-\cos x|dx}\]                 \[=\sqrt{2}\int_{0}^{\pi /2}{\left| \cos \frac{\pi }{4}\sin x-\sin \frac{\pi }{4}\cos x \right|}dx\]                 \[=\sqrt{2}\int_{0}^{\pi /2}{\left| \sin \left( x-\frac{\pi }{4} \right) \right|}dx\]                 Put,         \[x-\frac{\pi }{4}=t\]\[\Rightarrow \]\[dx=dt\]                                 \[=\sqrt{2}\int_{-\pi /4}^{\pi /4}{|\sin t|}\,dt\]                                 \[=2\sqrt{2}\int_{0}^{\pi /4}{\sin t\,dt}\]                                 \[=2\sqrt{2}[-\cos t]_{0}^{\pi /4}\]                                 \[=-2\sqrt{2}\left[ \frac{1}{\sqrt{2}}-1 \right]\]                                 \[=2(\sqrt{2}-1)\]


You need to login to perform this action.
You will be redirected in 3 sec spinner