BCECE Engineering BCECE Engineering Solved Paper-2012

  • question_answer
    If \[x={{e}^{t}}\sin \,t,y={{e}^{t}}\cos t,t\]is a parameter, then \[\frac{{{d}^{2y}}}{d{{x}^{2}}}\]at \[(1,1)\]is equal to

    A)  \[-\frac{1}{2}\]                                

    B)         \[-\frac{1}{4}\]                

    C)         0                                            

    D)         \[\frac{1}{2}\]

    Correct Answer: A

    Solution :

    At point \[(1,1),1={{e}^{t}}\sin t,1={{e}^{t}}\cos t\] \[\Rightarrow \]               \[\tan t=1\Rightarrow t=\frac{\pi }{4}\] Now,     \[\frac{dy}{dt}={{e}^{t}}(\cos t-\sin t)\] and        \[\frac{dx}{dt}={{e}^{t}}(\sin t+\cos t)\] \[\Rightarrow \]               \[\frac{dy}{dx}=\frac{\cos t-\sin t}{\cos t+\sin t}.\] Now,     \[\frac{{{d}^{2}}y}{d{{x}^{2}}}=\frac{d}{dt}\left( \frac{\cos t-\sin t}{\cos t+\sin t} \right)\frac{dt}{dx}\] \[=\left[ \frac{\begin{align}   & (\cos t+\sin t)(-\sin t-\cos t) \\  & -(\cos t-\sin t)(-\sin t+\cos t) \\ \end{align}}{{{(\cos t+\sin t)}^{2}}} \right]\frac{dt}{dx}\] \[=\frac{-2}{{{(\cos t+\sin t)}^{2}}}.\frac{1}{{{e}^{t}}(\sin t+\cos t)}\] \[=\frac{-2}{({{e}^{t}}\cos t+{{e}^{t}}\sin t)}.\frac{1}{{{(\cos t+\sin t)}^{2}}}\] \[=\frac{-2}{x+y}.\frac{1}{{{(\cos t+\sin t)}^{2}}}\] \[=\frac{-2}{1+1}.\frac{1}{\left( \cos \frac{\pi }{4}+\sin \frac{\pi }{4} \right)}=-\frac{1}{2}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner