CET Karnataka Engineering CET - Karnataka Engineering Solved Paper-2000

  • question_answer
    A uniform wire of resistance R is uniformly compressed along its length, until the radius becomes\[n\]times the original radius. Now resistance of the wire becomes:

    A)  \[nR\]                                 

    B) \[\frac{R}{n}\]

    C)   \[\frac{R}{{{n}^{2}}}\]                                 

    D)  \[\frac{R}{{{n}^{4}}}\]

    Correct Answer: D

    Solution :

     Initial resistance \[{{R}_{1}}=R\] Initial radius of wire \[{{r}_{1}}=r\] Final radius of wire\[{{r}_{2}}=nr\]    (given) Let \[{{l}_{1}}\]and\[{{A}_{1}}\]is the length and the cross-sectional area of the original wire and \[{{l}_{2}}\]and \[{{A}_{2}}\]is the length and cross-sectional area of the compressed wire, since, volume of the wire remains constant.                 Hence,                  \[{{l}_{1}}\pi r_{1}^{2}={{l}_{2}}\pi r_{2}^{2}\]                                                 \[{{l}_{1}}{{r}^{2}}={{l}_{2}}{{(nr)}^{2}}\]                                                 \[\frac{{{l}_{1}}}{{{l}_{2}}}={{n}^{2}}\]                 and        \[\frac{{{A}_{1}}}{{{A}_{2}}}=\frac{\pi {{r}^{2}}}{\pi {{n}^{2}}{{r}^{2}}}=\frac{1}{{{n}^{2}}}\] The resistance is given by                                 \[R=\rho \frac{l}{A}\]                 Hence   \[\frac{{{R}_{1}}}{{{R}_{2}}}=\frac{{{l}_{1}}}{{{l}_{2}}}\times \frac{{{A}_{2}}}{{{A}_{1}}}={{n}^{2}}\times {{n}^{2}}={{n}^{4}}\]                 or            \[{{R}_{2}}=\frac{{{R}_{1}}}{{{n}^{4}}}=\frac{R}{{{n}^{4}}}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner