CET Karnataka Engineering CET - Karnataka Engineering Solved Paper-2005

  • question_answer
    A population p (t) of 1000 bacteria introduced into nutrient medium grows according to     the relation \[p\,(t)=1000+\frac{1000\,t}{100+{{t}^{2}}}\]. The maximum size of this bacterial population is :

    A)  1100                                     

    B)  1250

    C)  1050                                     

    D)  5250

    Correct Answer: C

    Solution :

    \[p(t)=1000+\frac{1000\,t}{100+{{t}^{2}}}\]                                         .... (i) On differentiating both side with respect to t, \[p\,(t)=0=\frac{(1000+{{t}^{2}})\,(1000)-1000\,\,t(2t)}{{{(100+{{t}^{2}})}^{2}}}\] \[=1000\frac{(100-{{t}^{2}})}{{{(100+{{t}^{2}})}^{2}}}\]                                   ?. (ii) put p(t) = 0 for maxima or minima \[\Rightarrow \,\,100-{{t}^{2}}=0\]          \[\Rightarrow \]               \[t=\pm \,\,10\] Now, again differentiatmg equation (ii) w.r. to x \[p\,(t)=1000\] \[\left[ \frac{{{(100+{{t}^{2}})}^{2}}(-2t)-100-{{t}^{2}})2(100+{{t}^{2}})\,2t}{{{(100+{{t}^{2}})}^{4}}} \right]\] \[=1000\,\,t\frac{\left[ 100+{{t}^{2}})\,(-2)-100-{{t}^{2}})\,(4) \right]}{{{(100+{{t}^{4}})}^{2}}}\] \[=-1000\,t\frac{[200+2\,{{t}^{2}}]}{{{(100+{{t}^{2}})}^{4}}}\] At \[t=10\] \[p\,(t)<0\] \[\therefore \] The maximum value is \[p(10)=1000+\frac{10000}{100+100}\]                 \[=1000+\frac{10000}{200}=1000+50\]                 \[=1050\]


You need to login to perform this action.
You will be redirected in 3 sec spinner