CET Karnataka Engineering CET - Karnataka Engineering Solved Paper-2010

  • question_answer
    P is the point of contact of the tangent form the origin to the curve\[y=lo{{g}_{e}}\text{ }x\]. The length of the perpendicular drawn form the origin to the normal at P is

    A) \[\frac{1}{2e}\]                                

    B) \[\frac{1}{e}\]

    C) \[2\sqrt{{{e}^{2}}+1}\]                 

    D) \[\sqrt{{{e}^{2}}+1}\]

    Correct Answer: D

    Solution :

    Given, curve \[y={{\log }_{e}}x\]                                              ……(i) Let the coordinate of point of contact\[P(\alpha ,\beta )\] \[\Rightarrow \]               \[\frac{dy}{dx}=\frac{1}{x}\] Now, equation of tangent at ’P’ \[(y-\beta )=\frac{1}{\alpha }(x-\alpha )\] Since, the tangent passing through the origin ie,\[(0,0)\] \[(0-\beta )=\frac{1}{\alpha }(0-\alpha )\Rightarrow \beta =1\] At ‘P’ from Eq. (i)                 \[\beta ={{\log }_{e}}\alpha \] \[\Rightarrow \]               \[1={{\log }_{e}}\alpha \]                             \[(\because \beta =1)\] \[\Rightarrow \]               \[{{\log }_{e}}\alpha ={{\log }_{e}}e\]                 \[\alpha =e\] So, point of contact is\[P(e,1)\] Now, slope of normal\[\frac{dy}{dx}=-x\]                 \[{{\left( \frac{dy}{dx} \right)}_{at\,(p)}}=-e\] Equation of normal at ‘P’                 \[(y-1)=-e(x-e)\]                 \[y-1=-ex-{{e}^{2}}\]                 \[ex+y-({{e}^{2}}+1)=0\]                              ….(ii) The length of perpendicular drawn form the origin to the normal \[=|e.0+0-({{e}^{2}}+1)|\]                 \[=\sqrt{{{e}^{2}}+1}\]                 \[=\frac{({{e}^{2}}+1)}{\sqrt{{{e}^{2}}+1}}\]                 \[=\sqrt{{{e}^{2}}+1}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner