J & K CET Engineering J and K - CET Engineering Solved Paper-2004

  • question_answer
    If \[\alpha ,\beta ,\gamma ,\delta \] are the smallest positive angles in ascending order of magnitude which have their sines equal to the positive quantity k, then the value of \[4\,\sin \frac{\alpha }{2}+3\sin \frac{\beta }{2}+2\sin \frac{\gamma }{2}+\sin \frac{\delta }{2}\]is equal to

    A)  \[2\sqrt{1-k}\]

    B)  \[2\sqrt{1-k}\]

    C)  \[\frac{\sqrt{1+k}}{2}\] 

    D)  \[\sqrt{1+k}\]

    Correct Answer: B

    Solution :

    Given,  \[\alpha <\beta <\gamma <\delta \] Also,  \[\sin \,\alpha =\sin \beta =\sin \gamma =\sin \delta =k\] \[\therefore \]   \[\beta =\pi -\alpha ,\,\,\gamma =2\pi +\alpha ,\,\,\delta =3\pi -\alpha \] Now,   \[4\,\,\sin \frac{\alpha }{2}+3\,\,\sin \frac{\beta }{2}+2\,\sin \frac{\gamma }{2}+\sin \frac{\delta }{2}\] \[=4\sin \frac{\alpha }{2}+3\sin \left( \frac{\pi -\alpha }{2} \right)+2\sin \left( \frac{2\pi +\alpha }{2} \right)\] \[+\sin \left( \frac{3\pi -\alpha }{2} \right)\] \[=4\sin \frac{\alpha }{2}+3\,\cos \frac{\alpha }{2}-2\sin \frac{\alpha }{2}-\cos \frac{\alpha }{2}\] \[=2\sin \frac{\alpha }{2}+2\cos \frac{\alpha }{2}\] \[=2\sqrt{{{\left( \sin \frac{\alpha }{2}+\cos \frac{\alpha }{2} \right)}^{2}}}\] \[=2\sqrt{{{\sin }^{2}}\frac{\alpha }{2}+{{\cos }^{2}}\frac{\alpha }{2}+2\,\sin \frac{\alpha }{2}\,\cos \frac{\alpha }{2}}\] \[=2\sqrt{1+\sin \,\alpha }\] \[=2\sqrt{1+k}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner