J & K CET Engineering J and K - CET Engineering Solved Paper-2014

  • question_answer
    If \[{{x}^{y}}={{e}^{(x-y)}},\] then find \[dy/dx\]

    A)  \[\log x/{{(1+\log x)}^{2}}\]

    B)  \[(\log x)\,/\,(1+\log x)\]

    C)  \[(1-\log x)\,/\,(1+\log x)\]

    D)  \[(\log x)\,/\,{{(1-\log x)}^{2}}\]

    Correct Answer: A

    Solution :

    We have, \[{{x}^{y}}={{e}^{(x-y)}}\] Taking log on both sides, we get \[y\log x=(x-y)\log \,e\] \[\Rightarrow \] \[y\log x=x-y\] ?.(i) On differentiating w. r. t. x,  we get \[y.\frac{1}{x}+\log x.\frac{dy}{dx}=1-\frac{dy}{dx}\] \[\Rightarrow \] \[\frac{dy}{dx}(\log x+1)=1-\frac{y}{x}\] \[\Rightarrow \] \[\frac{dy}{dx}=\frac{x-y}{(\log \,x+1)x}\] \[\Rightarrow \] \[\frac{dy}{dx}=\frac{x-\frac{x}{\log x+1}}{x(\log x+1)}\] \[\left( from\,Eq.\,(i),\,\,y=\frac{x}{\log x+1} \right)\] \[\Rightarrow \] \[\frac{dy}{dx}=\frac{x\log x+x-x}{x{{(\log \,x+1)}^{2}}}\] \[\Rightarrow \] \[\frac{dy}{dx}=\frac{x\log x}{x{{(\log x+1)}^{2}}}\] \[\Rightarrow \] \[\frac{dy}{dx}=\frac{\log x}{{{(1+\log x)}^{2}}}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner