JAMIA MILLIA ISLAMIA Jamia Millia Islamia Solved Paper-2012

  • question_answer
        The equation of parabola whose focus is (5, 3) and directrix is\[3x-4y+1=0,\]is

    A)  \[{{(4x+3y)}^{2}}-256x-142y+849=0\]

    B)  \[{{(4x-3y)}^{2}}-256x-142y+849=0\]

    C)  \[{{(3x+4y)}^{2}}-142x-256y+849=0\]

    D)  \[{{(3x-4y)}^{2}}-256x-142y+849=0\]

    Correct Answer: A

    Solution :

                    Since, tan A and tan B are the roots of equation \[{{x}^{2}}-px+q=0\] \[\therefore \]  \[tan\text{ }A+tan\text{ }B=p\] and        \[tan\text{ }A\text{ }tan\text{ }B=q\] \[\therefore \]  \[\tan (A+B)=\frac{\tan A+\tan B}{1-\tan A\tan B}\]                 \[\tan (A+B)=\frac{p}{1-q}\] Now, \[{{\sin }^{2}}(A+B)=\frac{1-\cos 2(A+B)}{2}\]                                 \[\left[ \because {{\sin }^{2}}\theta =\frac{1-\cos 2\theta }{2} \right]\]                 \[=\frac{1}{2}[1-\cos 2(A+B)]\]                 \[=\frac{1}{2}\left[ 1-\frac{1-{{\tan }^{2}}(A+B)}{1+{{\tan }^{2}}(A+B)} \right]\]                                 \[\left[ \because \cos 2\theta =\frac{1-{{\tan }^{2}}\theta }{1+{{\tan }^{2}}\theta } \right]\] \[=\frac{1}{2}\left[ \frac{2{{\tan }^{2}}(A+B)}{1+{{\tan }^{2}}(A+B)} \right]\] \[\Rightarrow \]               \[{{\sin }^{2}}(A+B)=\frac{{{\tan }^{2}}(A+B)}{1+{{\tan }^{2}}(A+B)}\]                                 \[=\frac{\frac{{{p}^{2}}}{{{(1-q)}^{2}}}}{1+\frac{{{p}^{2}}}{{{(1-q)}^{2}}}}\]                                 \[=\frac{{{p}^{2}}}{{{p}^{2}}+{{(1-q)}^{2}}}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner