JCECE Engineering JCECE Engineering Solved Paper-2002

  • question_answer
     If \[a,\,\,b,\,\,c,\] are respectively the \[pth,\,\,qth,\,\,rth\] terms of an\[AP\], then \[\left[ \begin{matrix}    a & p & 1  \\    b & q & 1  \\    c & r & 1  \\ \end{matrix} \right]\] is equal to:

    A) \[1\]                                     

    B) \[-1\]

    C) \[0\]                                     

    D) \[pqr\]

    Correct Answer: C

    Solution :

    Let the first term be \[{{a}_{1}}\] and common difference be\[d.\] According to the condition                 \[{{T}_{p}}={{a}_{1}}+(p-1)d\] \[\Rightarrow \]               \[a={{a}_{1}}+(p-1)d\]                   ... (i)                 \[{{T}_{q}}={{a}_{1}}+(q-1)d\] \[\Rightarrow \]               \[b={{a}_{1}}+(q-1)d\]                   ... (ii) and        \[{{T}_{r}}={{a}_{1}}+(r-1)d\] \[\Rightarrow \]               \[c={{a}_{1}}+(r-1)d\]                                    ... (iii) \[\therefore \]\[\left| \begin{matrix}    a & p & 1  \\    b & q & 1  \\    c & r & 1  \\ \end{matrix} \right|=\left| \begin{matrix}    {{a}_{1}} & +(p-1)d & p\,\,\,1  \\    {{a}_{1}} & +(q-1)d & p\,\,\,1  \\    {{a}_{1}} & +(r-1)d & r\,\,\,1  \\ \end{matrix} \right|\] Applying              \[{{C}_{1}}\to {{C}_{1}}-({{C}_{2}}-{{C}_{1}})d\]                 \[=\left| \begin{matrix}    {{a}_{1}} & p & 1  \\    {{a}_{1}} & q & 1  \\    {{a}_{1}} & r & 1  \\ \end{matrix} \right|\]                 \[={{a}_{1}}\left| \begin{matrix}    1 & p & 1  \\    1 & q & 1  \\    1 & r & 1  \\ \end{matrix} \right|\]                 \[=0[\because \]two columns are identical] Note: If any two rows or columns are identical or proportional, then the value of determinant will be zero:


You need to login to perform this action.
You will be redirected in 3 sec spinner