JCECE Engineering JCECE Engineering Solved Paper-2006

  • question_answer
    If\[1,\,\,{{\log }_{3}}\sqrt{({{3}^{1-x}}+2)},\,\,{{\log }_{3}}(4\cdot {{3}^{x}}-1)\]are in \[AP\], then \[x\] equals:

    A) \[{{\log }_{3}}4\]                             

    B) \[1-{{\log }_{3}}4\]

    C) \[1-{{\log }_{4}}3\]                         

    D) \[{{\log }_{4}}3\]

    Correct Answer: B

    Solution :

    \[1,\,\,{{\log }_{3}}\sqrt{{{3}^{1-x}}+2},\,\,{{\log }_{3}}(4\cdot {{3}^{x}}-1)\]are in\[AP\] \[\therefore \]\[2{{\log }_{3}}{{({{3}^{1-x}}+2)}^{1/2}}=1+{{\log }_{3}}(4\cdot {{3}^{x}}-1)\] \[{{\log }_{3}}({{3}^{1-x}}+2)={{\log }_{3}}3+{{\log }_{3}}(4\cdot {{3}^{x}}-1)\] \[{{\log }_{3}}({{3}^{1-x}}+2)={{\log }_{3}}[3(4\cdot {{3}^{x}}-1)]\]           \[{{3}^{1-x}}+2=3(4\cdot {{3}^{x}}-1)\]       \[3\cdot {{3}^{-x}}+2=12\cdot {{3}^{x}}-3\] Let\[{{3}^{x}}=t\] \[\therefore \]  \[\frac{3}{t}+2=12t-3\]                 \[3+2t=12{{t}^{2}}-3t\]                 \[12{{t}^{2}}-5t-3=0\]     \[(12{{t}^{2}}-9t+4t-3)=0\]   \[3t(4t-3)+1(4t-3)=0\] \[\therefore \]  \[t=-\frac{1}{3},\,\,\frac{3}{4}\]             \[{{3}^{x}}=\frac{3}{4}\] \[\Rightarrow \]               \[x={{\log }_{3}}\left( \frac{3}{4} \right)={{\log }_{3}}3-{{\log }_{3}}4\] \[\Rightarrow \]               \[x=1-{{\log }_{3}}4\]


You need to login to perform this action.
You will be redirected in 3 sec spinner