JCECE Engineering JCECE Engineering Solved Paper-2007

  • question_answer
    If\[{{z}_{r}}=\cos \left( \frac{\pi }{{{2}^{r}}} \right)+i\sin \left( \frac{\pi }{{{2}^{r}}} \right),\,\,r=1,\,\,2,\,\,....\]then\[{{z}_{1}},\,\,{{z}_{2}},\,\,{{z}_{3}}....\]is equal to

    A) \[1\]                                     

    B) \[-i\]

    C) \[i\]                                       

    D) \[-1\]

    Correct Answer: D

    Solution :

    Given\[{{z}_{r}}=\cos \frac{\pi }{{{2}^{r}}}+i\sin \frac{\pi }{{{2}^{r}}};\,\,r=1,\,\,2,\,\,...\] \[\therefore \]\[{{z}_{1}}{{z}_{2}}{{z}_{3}}...=\left( \cos \frac{\pi }{2}+i\sin \frac{\pi }{2} \right)\left( \cos \frac{\pi }{{{2}^{2}}}+i\sin \frac{\pi }{{{2}^{2}}} \right)...\]\[={{e}^{i\pi /2\left( 1+\frac{1}{2}+\frac{1}{4}+......\infty  \right)}}={{e}^{i\pi /2\frac{1}{1-1/2}}}={{e}^{i\pi /2\cdot 2}}={{e}^{i\pi }}\]                 \[=\cos \pi +i\sin \pi =-1\] Alternate Method: \[{{z}_{1}}{{z}_{2}}.....{{z}_{n}}=\cos \left( \frac{\pi }{2}+\frac{\pi }{{{2}^{2}}}+\frac{\pi }{{{2}^{3}}}+.... \right)\] \[+i\sin \left( \frac{\pi }{2}+\frac{\pi }{{{2}^{2}}}+.... \right)\] ( By Applying De-Moivre's theorem)                 \[\cos \left( \frac{\pi }{2}\left( 1+\frac{1}{2}+\frac{1}{2}+.......\infty  \right) \right)\]                 \[+i\sin \left( \frac{\pi }{2}\left( 1+\frac{1}{2}+.......\infty  \right) \right)\]                 \[=\cos \left( \frac{\pi }{2}\cdot \frac{1}{1-\frac{1}{2}} \right)+i\sin \left( \frac{\pi }{2}\cdot \frac{1}{1-\frac{1}{2}} \right)\]                 \[=\cos \pi +i\sin \pi =-1\]


You need to login to perform this action.
You will be redirected in 3 sec spinner