JCECE Engineering JCECE Engineering Solved Paper-2008

  • question_answer
    If \[z\] is a complex number such that \[\frac{z-1}{z+1}\] is purely imaginary, then \[|z|\] is equal to

    A) \[0\]                                     

    B) \[1\]

    C) \[\sqrt{2}\]                                        

    D)  None of these

    Correct Answer: B

    Solution :

    Key Idea If \[z\] is purely imaginary, then real coefficient will be zero. Let\[z=x+iy\] \[\therefore \]  \[\frac{z-1}{z+1}=\frac{x+iy-1}{x+iy+1}\]                 \[=\frac{(x-1)+iy}{(x+1)+iy}\times \frac{(x+1)+iy}{(x+1)-iy}\] \[=\frac{(x-1)(x+1)-iy(x-1)+iy(x+1)-{{i}^{2}}{{y}^{2}}}{{{(x+1)}^{2}}-{{i}^{2}}{{y}^{2}}}\]                 \[=\frac{{{x}^{2}}-1-iyx+iy+iyx+iy+{{y}^{2}}}{{{(x+1)}^{2}}+{{y}^{2}}}\]                 \[=\frac{{{x}^{2}}-1+{{y}^{2}}+2iy}{{{(x+1)}^{2}}+{{y}^{2}}}\]                 \[=\frac{{{x}^{2}}-1+{{y}^{2}}}{{{(x+1)}^{2}}+{{y}^{2}}}+\frac{2y}{{{(x+1)}^{2}}+{{y}^{2}}}i\] Since, it is purely imaginary, then                 \[\frac{{{x}^{2}}-1+{{y}^{2}}}{{{(x+1)}^{2}}+{{y}^{2}}}=0\] \[\Rightarrow \]               \[{{x}^{2}}+{{y}^{2}}-1=0\] \[\Rightarrow \]               \[|z|=1\]                             \[(\because |z|={{x}^{2}}+{{y}^{2}})\]


You need to login to perform this action.
You will be redirected in 3 sec spinner