JCECE Engineering JCECE Engineering Solved Paper-2009

  • question_answer
    \[y={{\tan }^{-1}}\frac{\sqrt{(1+{{x}^{2}})}+\sqrt{(1-{{x}^{2}})}}{\sqrt{(1+{{x}^{2}})}-\sqrt{(1-{{x}^{2}})}}\], then\[\frac{dy}{dx}\]is equal to

    A) \[\frac{1}{\sqrt{1+{{x}^{2}}}}\]                 

    B) \[-\frac{1}{2}\]

    C) \[-\frac{x}{\sqrt{(1-{{x}^{4}})}}\]                             

    D) \[\frac{x\sqrt{1+{{x}^{2}}}}{1-{{x}^{4}}}\]

    Correct Answer: C

    Solution :

    Given,\[y={{\tan }^{-1}}\frac{\sqrt{1+{{x}^{2}}}+\sqrt{1-{{x}^{2}}}}{\sqrt{1+{{x}^{2}}}-\sqrt{1-{{x}^{2}}}}\] Put\[{{x}^{2}}=\cos 2\theta \Rightarrow \theta =\frac{{{\cos }^{-1}}{{x}^{2}}}{2}\]                           ? (i) \[\therefore \]\[y={{\tan }^{-1}}\left( \frac{\sqrt{1+\cos 2\theta }+\sqrt{1-\cos 2\theta }}{\sqrt{1+\cos 2\theta }-\sqrt{1-\cos 2\theta }} \right)\]         \[={{\tan }^{-1}}\left( \frac{\sqrt{2}\cos \theta +\sqrt{2}\sin \theta }{\sqrt{2}\cos \theta -\sqrt{2}\sin \theta } \right)\]         \[={{\tan }^{-1}}\left( \frac{1+\tan \theta }{1-\tan \theta } \right)\]         \[={{\tan }^{-1}}\left[ \tan \left( \frac{\pi }{4}+\theta  \right) \right]\]         \[=\frac{\pi }{4}+\theta \] \[\Rightarrow \]\[y=\frac{\pi }{4}+\frac{{{\cos }^{-1}}{{x}^{2}}}{2}\]                         [from Eq. (i)] On differentiating w.r.t.\[x,\] we get                 \[\frac{dy}{dx}=0-\frac{1}{2}\frac{2x}{\sqrt{1-{{x}^{4}}}}\]                      \[=-\frac{x}{\sqrt{1-{{x}^{4}}}}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner