JCECE Engineering JCECE Engineering Solved Paper-2010

  • question_answer
    If \[a,\,\,\,b,\,\,\,c\] are the sides of a \[\Delta \,\,ABC\] which are in\[AP\], then \[\cot \frac{C}{2}\] is equal to

    A) \[3\tan \frac{A}{2}\]                      

    B) \[3\tan \frac{B}{2}\]

    C) \[3\cot \frac{A}{2}\]                      

    D) \[2\cot \frac{B}{2}\]

    Correct Answer: A

    Solution :

    Since, the sides of the \[\Delta \,\,ABC\] are in\[AP.\] \[\therefore \]  \[2b=a+c\] \[\Rightarrow \]               \[3b=a+b+c=2s\] Now,     \[\cot \frac{C}{2}=\sqrt{\frac{s(s-c)}{(s-a)(2s-2b)}}\]                            \[=\sqrt{\frac{2s(s-c)}{(s-a)(2s-2b)}}\]                            \[=\sqrt{\frac{3b(s-c)}{(s-a)(3b-2b)}}\]                            \[=\sqrt{\frac{3(s-c)}{s-a}}\]                            \[=3\sqrt{\frac{(s-c)}{3(s-a)}}\] \[\Rightarrow \]               \[\cot \frac{C}{2}=3\sqrt{\frac{b(s-c)}{3b(s-a)}}\] \[\cot \frac{C}{2}=3\sqrt{\frac{(2s-2b)(s-c)}{2s(s-a)}}\]\[\left[ \begin{matrix}    \because \,\,3b=2s  \\    \Rightarrow b+2b=2s  \\    \Rightarrow b=2s-2b  \\ \end{matrix} \right.\] \[\Rightarrow \]               \[\cos \frac{C}{2}=3\sqrt{\frac{(s-b)(s-c)}{s(s-a)}}\]                            \[=3\tan \frac{A}{2}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner