JCECE Engineering JCECE Engineering Solved Paper-2011

  • question_answer
    The curve satisfying \[y\,dx-xdx+\log \,\,x\,dx=0\] for \[x>0\] and passing through\[(1,\,\,-1)\]is

    A) \[y=-1-\log x\]

    B) \[y+\log x=0\]

    C) \[y={{e}^{x}}-1\]

    D)  None of the above

    Correct Answer: A

    Solution :

    Given,\[y\,\,dx-x\,\,dy+\log x\,\,dx=0\]                 \[(y+\log x)dx=x\,\,dy\] \[\Rightarrow \]               \[\frac{dy}{dx}=\frac{y}{x}+\frac{\log x}{x}\Rightarrow \frac{dy}{dx}-\frac{y}{x}=\frac{\log x}{x}\] \[IF\]     \[={{e}^{-\int{\frac{1}{x}dx}}}={{e}^{-\log x}}=\frac{1}{x}\] Solution is                 \[y\cdot \frac{1}{x}=\int{\frac{\log x}{x}\cdot \frac{1}{x}dx+C}\] Put         \[\log x=t\Rightarrow \frac{1}{x}dx=dt\]                 \[\frac{y}{x}=\int{\frac{t}{{{e}^{t}}}\cdot dt+C=\int{t{{e}^{-t}}}dt+C}\]                 \[\frac{y}{x}=[-t\,\,{{e}^{-t}}-{{e}^{-t}}]+C\] \[\Rightarrow \]               \[y=x\left( \frac{\log x}{x}-\frac{1}{x} \right)+C\] \[\Rightarrow \]               \[y=-\log x-1+C\]                                ... (i) It passes through\[(1,\,\,-1)\] \[\therefore \]  \[-1=-\log (1)-1+C=0-1+C\]                 \[C=0\] \[\therefore \]Required solution is                 \[y=-\log x-1\]


You need to login to perform this action.
You will be redirected in 3 sec spinner