JCECE Engineering JCECE Engineering Solved Paper-2014

  • question_answer
    When \[1\,\,cm\]thick surface is illuminated with light of wavelength\[\lambda \], the stopping potential is\[V\]. When the same surface is illuminated by light of wavelength\[2\lambda \], the stopping potential is\[\frac{V}{3}\]. Threshold wavelength for metallic surface is

    A) \[\frac{4\lambda }{3}\]                                 

    B) \[4\lambda \]

    C) \[6\lambda \]                                   

    D)  \[\frac{8\lambda }{3}\]

    Correct Answer: B

    Solution :

    According to the question,                 \[ev=hc\left( \frac{1}{\lambda }-\frac{1}{{{\lambda }_{0}}} \right)\]                         ... (i)                 \[\frac{ev}{3}=hc\left( \frac{1}{2\lambda }-\frac{1}{{{\lambda }_{0}}} \right)\]                    ? (ii) Dividing Eq (i) by Eq (ii), we get                 \[3=\frac{\left( \frac{1}{\lambda }-\frac{1}{{{\lambda }_{0}}} \right)}{\left( \frac{1}{2\lambda }-\frac{1}{{{\lambda }_{0}}} \right)}\] or            \[3\left( \frac{1}{2\lambda }-\frac{1}{{{\lambda }_{0}}} \right)=\frac{1}{\lambda }-\frac{1}{{{\lambda }_{0}}}\]                 \[\frac{3}{2\lambda }-\frac{1}{\lambda }=\frac{3}{{{\lambda }_{0}}}-\frac{1}{{{\lambda }_{0}}}\]                 \[\frac{1}{2\lambda }=\frac{2}{{{\lambda }_{0}}}\] Threshold wavelength for metallic surface                 \[{{\lambda }_{0}}=4\lambda \]


You need to login to perform this action.
You will be redirected in 3 sec spinner