JCECE Medical JCECE Medical Solved Paper-2013

  • question_answer
    Two coherent sources of intensity ratio p interfere. Then, the value\[({{I}_{\max }}-{{I}_{\min }})/({{I}_{\max }}+{{I}_{\min }})\]is

    A) \[\frac{1+\beta }{\sqrt{\beta }}\]

    B)  \[\sqrt{\frac{1+\beta }{\beta }}\]

    C)  \[\frac{1+\beta }{2\sqrt{\beta }}\]

    D)  \[\frac{2\sqrt{\beta }}{1+\beta }\]

    Correct Answer: D

    Solution :

     Given, \[\frac{{{l}_{1}}}{{{l}_{2}}}=\beta =\frac{{{a}^{2}}}{{{b}^{2}}}\] \[\Rightarrow \] \[\frac{a}{b}=\sqrt{\beta }\] \[{{l}_{\max }}={{(a+b)}^{2}}\] and \[{{l}_{\min }}={{(a-b)}^{2}}\] \[\therefore \] \[\frac{{{l}_{\max }}-{{l}_{\min }}}{{{l}_{\max }}+{{l}_{\min }}}=\frac{{{(a+b)}^{2}}-{{(a-b)}^{2}}}{{{(a+b)}^{2}}+{{(a-b)}^{2}}}\] \[=\frac{4ab}{2({{a}^{2}}+{{b}^{2}})}=\frac{2ab}{({{a}^{2}}+{{b}^{2}})}\] \[=\frac{2b.b\sqrt{\beta }}{{{b}^{2}}+\beta {{b}^{2}}}=\frac{2\sqrt{\beta }}{1+\beta }\]


You need to login to perform this action.
You will be redirected in 3 sec spinner