Manipal Engineering Manipal Engineering Solved Paper-2008

  • question_answer
    \[\int{\frac{x{{\tan }^{-1}}x}{{{(1+{{x}^{2}})}^{3}}}}dx\]is equal to

    A) \[\frac{x-{{\tan }^{-1}}x}{1-{{x}^{2}}}+c\]                             

    B) \[\frac{x+{{\tan }^{-1}}x}{\sqrt{1-{{x}^{2}}}}+c\]

    C) \[\frac{x-{{\tan }^{-1}}x}{\sqrt{1+{{x}^{2}}}}+c\]

    D)        \[\frac{x+\sqrt{1-{{x}^{2}}}}{\sqrt{1+{{x}^{2}}}}+c\]

    Correct Answer: C

    Solution :

    Let\[I=\int{\frac{x{{\tan }^{-1}}x}{{{(1+{{x}^{2}})}^{3/2}}}}dx\]                 Put\[x\tan \theta \Rightarrow dx={{\sec }^{2}}\theta d\theta \] \[\therefore \]  \[I=\int{\frac{\tan \theta {{\tan }^{-1}}(\tan \theta )}{{{(1+{{\tan }^{2}}\theta )}^{3/2}}}{{\sec }^{2}}\theta d\theta }\] \[\Rightarrow \]               \[I=\int{\frac{\theta \tan \theta {{\sec }^{2}}\theta }{{{\sec }^{3}}\theta }d\theta }\] \[\Rightarrow \]               \[I=\int{\theta \sin \theta \,\,d\theta }\] \[\Rightarrow \]               \[I=\theta (-\cos \theta )+\int{\cos \theta \,\,d\theta }\] \[\Rightarrow \,\,\,\,I=\theta (-\cos \theta )\,+\sin \theta +c\] \[\Rightarrow \]               \[I=-{{\tan }^{-1}}x\frac{1}{\sqrt{1+{{x}^{2}}}}+\frac{x}{\sqrt{1+{{x}^{2}}}}+c\] \[\Rightarrow \,\,\,\,\,\,\,\,I=\frac{(x-{{\tan }^{-1}}x)}{\sqrt{1+{{x}^{2}}}}+c\]


You need to login to perform this action.
You will be redirected in 3 sec spinner