Manipal Engineering Manipal Engineering Solved Paper-2009

  • question_answer
    \[y={{e}^{a{{\sin }^{-1}}x}}\Rightarrow (1-{{x}^{2}}){{y}_{n+2}}-(2n+1)x{{y}_{n+1}}\]is equal to

    A) \[-({{n}^{2}}+{{a}^{2}}){{y}_{n}}\]

    B) \[({{n}^{2}}-{{a}^{2}}){{y}_{n}}\]

    C) \[({{n}^{2}}+{{a}^{2}}){{y}_{n}}\]

    D) \[-({{n}^{2}}-{{a}^{2}}){{y}_{n}}\]

    Correct Answer: C

    Solution :

    Given,\[y={{e}^{a{{\sin }^{-1}}x}}\] On differentiating w.r.t.\[x\], we get                 \[{{y}_{1}}={{e}^{a{{\sin }^{-1}}x}}a\cdot \frac{1}{\sqrt{1-{{x}^{2}}}}\] \[\Rightarrow \]               \[{{y}_{1}}\sqrt{1-{{x}^{2}}}=ay\] \[\Rightarrow \]               \[(1-{{x}^{2}})y_{1}^{2}={{a}^{2}}{{y}^{2}}\] Again, differentiating w.r.t. x/we get                 \[(1-{{x}^{2}})2{{y}_{1}}{{y}_{2}}-2xy_{1}^{2}={{a}^{2}}2y{{y}_{1}}\] \[\Rightarrow \]               \[(1-{{x}^{2}}){{y}_{2}}-x{{y}_{1}}-{{a}^{2}}y=0\] Using Leibnitzs rule, \[(1-{{x}^{2}}){{y}_{n+2}}{{+}^{n}}{{C}_{1}}{{y}_{n+1}}(-2x){{+}^{n}}{{C}_{2}}{{y}_{n}}(-2)\]                                 \[-x{{y}_{n+1}}{{-}^{n}}{{C}_{1}}{{y}_{n}}-{{a}^{2}}{{y}_{n}}=0\] \[\Rightarrow \,(1-{{x}^{2}}){{y}_{n+2}}\,+x{{y}_{n+1}}(-2n-1)\]                                 \[+{{y}_{n}}[-n(n-1)-n-{{a}^{2}}]=0\] \[\Rightarrow \,(1-{{x}^{2}}){{y}_{n+2}}-(2n+1)x{{y}_{n+1}}=({{n}^{2}}+{{a}^{2}}){{y}_{n}}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner