Manipal Engineering Manipal Engineering Solved Paper-2010

  • question_answer
    The sum of all the solutions of the equation\[\cos x\cdot \cos \left( \frac{\pi }{3}+x \right)\cdot \cos \left( \frac{\pi }{3}-x \right)=\frac{1}{4}\],\[x\in [0,\,\,6\pi ]\]is

    A) \[15\pi \]                                            

    B) \[30\pi \]

    C) \[\frac{110\pi }{3}\]       

    D)         None of these

    Correct Answer: B

    Solution :

    We have,\[\cos x\cdot \cos \left( \frac{\pi }{3}+x \right)\cos \left( \frac{\pi }{3}-x \right)=\frac{1}{4}\] \[\Rightarrow \]               \[\cos x\left( \frac{1}{4}{{\cos }^{2}}x-\frac{3}{4}{{\sin }^{2}}x \right)=\frac{1}{4}\] or            \[\frac{\cos x}{4}(4{{\cos }^{2}}x-3)=\frac{1}{4}\] \[\Rightarrow \]               \[4{{\cos }^{3}}x-3\cos x=1\]                                 \[(\because \,\,\cos 3x=4{{\cos }^{3}}x-3\cos x)\] or            \[\cos 3x=1\] \[\Rightarrow \]               \[3x=2n\pi \] \[\Rightarrow \]\[x=\frac{2n\pi }{3},\] where\[n=0,\,1,\,2,\,3,\,4,\,5,\,6,\,7,\,8,\,9\]                                                 \[(\because \,\,x\in [0,\,\,6\pi ])\] \[\therefore \]The required sum\[=\frac{2\pi }{3}\sum\limits_{n=0}^{9}{n=30\pi }\]


You need to login to perform this action.
You will be redirected in 3 sec spinner