Manipal Engineering Manipal Engineering Solved Paper-2012

  • question_answer
    If\[\frac{{{e}^{x}}}{1-x}={{B}_{0}}+{{B}_{1}}x+{{B}_{2}}{{x}^{2}}+...+{{B}_{n}}{{x}^{n}}+...\], then \[{{B}_{n}}-{{B}_{n-1}}\]equals

    A) \[\frac{1}{n!}\]                 

    B) \[\frac{1}{(n-1)!}\]

    C) \[\frac{1}{n!}-\frac{1}{(n-1)!}\] 

    D)        \[1\]

    Correct Answer: A

    Solution :

                    We have, \[\frac{{{e}^{x}}}{1-x}={{B}_{0}}+{{B}_{1}}x+{{B}_{2}}{{x}^{2}}+...+{{B}_{n}}{{x}^{n}}+...\] \[\Rightarrow \]\[{{e}^{x}}{{(1-x)}^{-1}}={{B}_{0}}+{{B}_{1}}x+{{B}_{2}}{{x}^{2}}+...+{{B}_{n}}{{x}^{n}}+...\] \[\Rightarrow \]\[\left( 1+\frac{x}{1!}+\frac{{{x}^{2}}}{2!}+...+\frac{{{x}^{n-1}}}{(n-1)!}+\frac{{{x}^{n}}}{n!}+... \right)\times \]                 \[(1+x+{{x}^{2}}+...+{{x}^{n-1}}+{{x}^{n}}+...\infty )\] \[={{B}_{0}}+{{B}_{1}}x+{{B}_{2}}{{x}^{2}}+...+{{B}_{n}}{{x}^{n}}+...\] On comparing the coefficients of\[{{x}^{n}}\]and\[{{x}^{n-1}}\]on both sides, we get \[\frac{1}{n!}+\frac{1}{(n-1)!}+...+\frac{1}{2!}+\frac{1}{1!}+1={{B}_{n}}\] and\[\frac{1}{(n-1)!}+\frac{1}{(n-2)!}+...+\frac{1}{2!}+\frac{1}{1!}+1\]                                                                 \[={{B}_{n-1}}\]                                 \[{{B}_{n}}-{{B}_{n-1}}\,=\frac{1}{n!}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner