Manipal Engineering Manipal Engineering Solved Paper-2012

  • question_answer
    If\[a>2b>0\], then positive value of\[m\]for which \[y=mx-b\sqrt{1+{{m}^{2}}}\]is a common tangent to\[{{x}^{2}}+{{y}^{2}}={{b}^{2}}\]and\[{{(x-a)}^{2}}+{{y}^{2}}={{b}^{2}}\]is

    A) \[\frac{2b}{\sqrt{{{a}^{2}}-4{{b}^{2}}}}\]                              

    B) \[\frac{\sqrt{{{a}^{2}}-4{{b}^{2}}}}{2b}\]

    C) \[\frac{2b}{a-2b}\]         

    D)        \[\frac{b}{a-2b}\]

    Correct Answer: A

    Solution :

    Given,\[y=mx-b\sqrt{1+{{m}^{2}}}\]touches both the circles. So, distance from centre = Radius of both the circles                 \[\frac{|-b\sqrt{1+{{m}^{2}}}|}{\sqrt{{{m}^{2}}+1}}=b\] and        \[\frac{|ma-0-b\sqrt{1+{{m}^{2}}}|}{\sqrt{{{m}^{2}}+1}}\] \[\Rightarrow \]               \[|ma-b\sqrt{1+{{m}^{2}}}|=|-b\sqrt{1+{{m}^{2}}}|\] \[\Rightarrow \]               \[{{m}^{2}}{{a}^{2}}-2abm\sqrt{1+{{m}^{2}}}+{{b}^{2}}(1+{{m}^{2}})\]                 \[={{b}^{2}}(1+{{m}^{2}})\] \[\Rightarrow \]               \[ma-2b\sqrt{1+{{m}^{2}}}=0\] \[\Rightarrow \]               \[{{m}^{2}}{{a}^{2}}=4{{b}^{2}}(1+{{m}^{2}})\] \[\Rightarrow \]               \[{{m}^{2}}({{a}^{2}}-4{{b}^{2}})=4{{b}^{2}}\] \[\Rightarrow \]               \[m=\frac{2b}{\sqrt{{{a}^{2}}-4{{b}^{2}}}}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner