RAJASTHAN ­ PET Rajasthan PET Solved Paper-2005

  • question_answer
    The solution of the differential equation \[\frac{dy}{dx}+\frac{1}{x}\tan y=\frac{1}{{{x}^{2}}}\tan y\sin y\]is

    A)  \[2x=\frac{(1+2c{{x}^{2}})}{\sin y}\]

    B)  \[2x=\sin y(1+2c{{x}^{2}})\]

    C)  \[2x+\sin y(1+c{{x}^{2}})=0\]

    D)  None of the above

    Correct Answer: B

    Solution :

     \[\frac{dy}{dx}+\frac{1}{x}\tan y=\frac{1}{{{x}^{2}}}\tan y\sin y\] \[\Rightarrow \] \[\cot y\cos ec\,y\frac{dy}{dx}+\frac{1}{x}\cos ecy=\frac{1}{{{x}^{2}}}\]  ...(i) Let cosec \[y=-v\] \[\Rightarrow \] \[-\cos ecy.\cot y\frac{dy}{dx}=\frac{-dv}{dx}\] Then \[\frac{dv}{dx}-\frac{1}{x}v=\frac{1}{{{x}^{2}}}\] Here,     \[P=-\frac{1}{x},Q=\frac{1}{{{x}^{2}}}\] \[IF={{e}^{\int{P}\,dx}}\] \[={{e}^{\int{\left( -\frac{1}{x} \right)}\,dx}}={{e}^{-\log x}}\] \[={{x}^{-1}}=1/x\] Hence, solution of the given differential equation is \[v.\left( \frac{1}{x} \right)=\int{\frac{1}{{{x}^{2}}}.\left( \frac{1}{x} \right)}dx-c\] \[=\int{\frac{1}{{{x}^{3}}}}dx-c\] \[\Rightarrow \] \[\frac{v}{x}=\left( -\frac{1}{2{{x}^{2}}} \right)-c\] \[\Rightarrow \] \[\frac{v}{x}=-\frac{1}{2{{x}^{2}}}-c\] \[\Rightarrow \] \[2xv=-(1+2c{{x}^{2}})\] \[\Rightarrow \] \[-2x\cos ecy=-(1+2c{{x}^{2}})\] \[\Rightarrow \] \[2x=\sin y(1+2c{{x}^{2}})\]


You need to login to perform this action.
You will be redirected in 3 sec spinner