VIT Engineering VIT Engineering Solved Paper-2007

  • question_answer
    If  \[x\sin \left( \frac{y}{x} \right)dy=\left[ y\,\sin \left( \frac{y}{x} \right)-x \right]dx\] and \[y(1)=\frac{\pi }{2},\]then the value of \[\cos \left( \frac{y}{x} \right)\] is equal to:

    A)  \[x\]

    B)  \[\frac{1}{x}\]

    C)  \[\log x\]

    D)  \[{{e}^{x}}\]

    Correct Answer: C

    Solution :

    \[x\sin \left( \frac{y}{x} \right)dy=\left[ y\,\sin \left( \frac{y}{x} \right)-x \right]dx\] \[\Rightarrow \] \[\frac{dy}{dx}=\frac{y\,\sin \left( \frac{y}{x} \right)-x}{x\sin \left( \frac{y}{x} \right)}=\frac{\frac{y}{x}\sin \left( \frac{y}{x} \right)-1}{\sin \left( \frac{y}{x} \right)}\] Let \[\frac{y}{x}=u\]and \[\frac{dy}{dx}=x\frac{du}{dx}+u\] \[\therefore \] \[x\frac{du}{dx}+u=\frac{u\sin u-1}{\sin u}\] \[\Rightarrow \] \[x\frac{du}{dx}=\frac{u\sin u-1-u\sin u}{\sin u}\] \[\Rightarrow \] \[-\sin udu=\frac{1}{x}dx\] On integrating both sides, we get \[\cos u=\log x+c\] \[\Rightarrow \] \[\cos \left( \frac{y}{x} \right)=\log x+c\] \[\because \] \[y\,(1)=\frac{\pi }{2}\] \[\therefore \] \[\cos \frac{\pi }{2}=\log 1+c\Rightarrow c=0\] Thus, \[\cos \left( \frac{y}{x} \right)=\log x\]


You need to login to perform this action.
You will be redirected in 3 sec spinner