VIT Engineering VIT Engineering Solved Paper-2009

  • question_answer
    If x, y, z are all positive and are the \[p\text{th},\] \[q\text{th}\]and \[r\text{th}\]terms  of a  geometric  progression respectively, then the value of the determinant \[\left| \begin{matrix}    \log x & p & 1  \\    \log y & q & 1  \\    \log z & r & 1  \\ \end{matrix} \right|\,\,\text{equals}\]

    A)  \[\log xyz\]

    B)  \[(p-q)\,(q-1)\,(r-1)\]

    C)  \[pqr\]

    D)  \[0\]

    Correct Answer: D

    Solution :

    Let a and R be the first term and common ratio of a GP. \[\therefore \] \[{{T}_{p}}=a{{R}^{p-1}}=x\] \[{{T}_{q}}=a{{R}^{q-1}}=y\] and \[{{T}_{r}}=a{{R}^{r-1}}=z\] \[\text{log }x=\text{log }a+\left( p-1 \right)\,\,\text{log }R\] \[\text{log }y=\text{log }a+\left( q-1 \right)\,\,\text{log }R\] and    \[\text{log }z=\text{log }a+\left( r-1 \right)\,\,\text{log }R\] \[\therefore \left| \begin{matrix}    \log x & p & 1  \\    \log y & q & 1  \\    \log z & r & 1  \\ \end{matrix} \right|=\left| \begin{matrix}    \log a+(p-1)\,\log R & p & 1  \\    \log a+(q-1)\log R & q & 1  \\    \log a+(r-1)\,\log R & r & 1  \\ \end{matrix} \right|\] \[=\left| \begin{matrix}    \log a & p & 1  \\    \log a & q & 1  \\    \log a & r & 1  \\ \end{matrix} \right|+\left| \begin{matrix}    (p-1)\,\log R & p & 1  \\    (q-1)\log R & q & 1  \\    (r-1)\,\log R & r & 1  \\ \end{matrix} \right|\] \[=\log a\left| \begin{matrix}    1 & p & 1  \\    1 & q & 1  \\    1 & r & 1  \\ \end{matrix} \right|+\log R\left| \begin{matrix}    p-1 & p-1 & 1  \\    q-1 & q-1 & 1  \\    r-1 & r & 1  \\ \end{matrix} \right|\] \[({{C}_{2}}\to {{C}_{2}}-{{C}_{3}})\] \[=0+0=0\]     (\[\because \] two columns are identical)


You need to login to perform this action.
You will be redirected in 3 sec spinner