Chart for the Sign of Different Trigonometrical
Category : 10th Class
Quadrant\[\to \] Ratios \[\downarrow \] |
I | II | III | IV |
\[\sin \theta \] | + | + | - | - |
\[\cos \theta \] | + | - | - | + |
\[\tan \theta \] | + | - | + | - |
\[\cot \theta \] | + | - | + | - |
\[\sec \theta \] | + | - | - | + |
\[co\sec \theta \] | + | + | - | - |
Value of Trigonometrical Ratios for Some Special Angles
Angle \[\to \] Rations \[\downarrow \] |
\[{{0}^{o}}\] | \[{{30}^{o}}\] | \[{{45}^{o}}\] | \[{{60}^{o}}\] | \[{{90}^{o}}\] |
\[\sin \theta \] | 0 | \[\frac{1}{2}\] | \[\frac{1}{\sqrt{2}}\] | \[\frac{\sqrt{3}}{2}\] | 1 |
\[\cos \theta \] | 1 | \[\frac{\sqrt{3}}{2}\] | \[\frac{1}{\sqrt{2}}\] | \[\frac{1}{2}\] | 0 |
\[\tan \theta \] | 0 | \[\frac{1}{\sqrt{3}}\] | 1 | \[\sqrt{3}\] | Not Defined |
\[\cot \theta \] | Not Defined | \[\sqrt{3}\] | 1 | \[\frac{1}{\sqrt{3}}\] | 0 |
\[\sec \theta \] | 1 | \[\frac{2}{\sqrt{3}}\] | \[\sqrt{2}\] | 2 | Not Defined |
\[co\sec \theta \] | Not Defined | 2 | \[\sqrt{2}\] | \[\frac{2}{\sqrt{3}}\] | 1 |
From the above table
\[{{\sin }^{o}}=0,\sin {{30}^{o}}=\frac{1}{2},\sin {{45}^{o}}=\frac{1}{\sqrt{2}}\] and so on.
The value of \[\frac{{{\sin }^{2}}{{45}^{o}}+{{\cos }^{2}}{{45}^{o}}}{{{\sin }^{2}}{{30}^{o}}}\] is________.
(a) \[\frac{1}{2}\]
(b) \[\frac{1}{4}\]
(c) 4
(d) 1
(e) None of these
Answer: (c)
Explanation:
We know that
\[\sin {{45}^{o}}=\frac{1}{\sqrt{2}}=\cos {{45}^{o}}\] and \[\sin {{30}^{o}}=\frac{1}{2}\]
\[=\frac{{{\sin }^{2}}{{45}^{o}}+{{\cos }^{2}}{{45}^{o}}}{{{\sin }^{2}}{{30}^{o}}}=\]\[\frac{{{\left( \frac{1}{\sqrt{2}} \right)}^{2}}+{{\left( \frac{1}{\sqrt{2}} \right)}^{2}}}{{{\left( \frac{1}{\sqrt{2}} \right)}^{2}}}\]
\[=\frac{\frac{1}{2}+\frac{1}{2}}{\frac{1}{4}}\] \[=\frac{1}{\frac{1}{4}}\] \[=4\]
The value of \[\text{2(si}{{\text{n}}^{\text{2}}}\text{45}{}^\circ +\text{co}{{\text{t}}^{\text{2}}}\text{3}0{}^\circ )-\text{6}(\text{co}{{\text{s}}^{\text{2}}}\text{45}{}^\circ \] \[-\text{co}{{\text{t}}^{\text{2}}}\text{6}0{}^\circ )\]is _____.
(a) 3
(b) 5
(c) 4
(d) \[\text{ta}{{\text{n}}^{\text{2}}}\text{6}0{}^\circ +\text{co}{{\text{t}}^{\text{2}}}\text{3}0{}^\circ \]
(e) None of these
Answer: (d)
Explanation:
Given trigonometrical expression is:
\[\text{2(si}{{\text{n}}^{\text{2}}}\text{45}{}^\circ +\text{co}{{\text{t}}^{\text{2}}}\text{3}0{}^\circ )-\text{6}(\text{co}{{\text{s}}^{\text{2}}}\text{45}{}^\circ -\text{co}{{\text{t}}^{\text{2}}}\text{6}0{}^\circ )\]
\[=2\left[ {{\left( \frac{1}{\sqrt{2}} \right)}^{2}}+{{\left( \sqrt{3} \right)}^{2}} \right]-6\left[ {{\left( \frac{1}{\sqrt{2}} \right)}^{2}}-{{\left( \frac{1}{\sqrt{3}} \right)}^{2}} \right]\]
\[=2\left[ \frac{1}{2}+3 \right]-6\left[ \frac{1}{2}+\frac{1}{3} \right]\]\[=\bcancel{2}\left[ \frac{7}{\bcancel{2}} \right]-\bcancel{6}\left[ \frac{1}{\bcancel{6}} \right]\]
\[=\text{7}-\text{1}=\text{6}=\text{3}+\text{3}=\text{ ta}{{\text{n}}^{\text{2}}}\text{6}0{}^\circ +\text{co}{{\text{t}}^{\text{2}}}\text{3}0{}^\circ \]
If \[2\sin 2\theta =\sqrt{3}\] then the value of \[\theta \] is _____.
(a) \[\frac{\pi }{3}\]
(b) \[\frac{\pi }{6}\]
(c) \[\frac{\pi }{4}\]
(d) \[\frac{\pi }{2}\]
(e) None of these
Answer: (b)
If \[\text{cos2}x=\text{ sin6}0{}^\circ .\text{ cos3}0{}^\circ -\text{cos6}0{}^\circ .\text{ sin3}0{}^\circ \] then the value of \[x\] is _____.
(a) \[\frac{\pi }{6}\]
(b) \[\frac{\pi }{3}\]
(c) \[\frac{2\pi }{3}\]
(d) \[\frac{3\pi }{6}\]
(e) None of these
Answer: (a)
If \[\tan 5\theta =1\] then the value of \[\theta \] is _____.
(a) \[-\pi <\theta <0\]
(b) \[\frac{\pi }{3}<\theta <\frac{\pi }{2}\]
(c) \[0<\theta <\frac{\pi }{6}\]
(d) \[\frac{\pi }{6}<\theta <\frac{\pi }{3}\]
(e) None of these
Answer: (c)
If \[\sec \alpha +\tan \alpha =p\] then the value of \[\tan \alpha \] is_____.
(a) \[\frac{p-1}{2p}\]
(b) \[\frac{{{p}^{2}}-1}{2p}\]
(c) \[{{p}^{2}}-1\]
(d) \[\frac{{{p}^{2}}-1}{{{p}^{2}}+1}\]
(e) None of these
Answer: (b)
If \[\text{cosec}\theta -\text{sin}\theta =\text{m}\] and \[\text{sec}\theta -\text{cos}\theta =\text{n}\] then
(a) \[{{({{m}^{2}}n)}^{\frac{2}{3}}}+{{(m{{n}^{2}})}^{\frac{2}{3}}}=1\]
(b) \[{{({{m}^{2}}{{n}^{2}})}^{\frac{1}{3}}}+{{(m{{n}^{2}})}^{\frac{1}{3}}}=1\]
(c) \[{{(m{{n}^{2}})}^{\frac{1}{3}}}+{{({{m}^{2}}{{n}^{2}})}^{\frac{2}{3}}}=1\]
(d) \[{{({{m}^{2}}{{n}^{2}})}^{\frac{1}{3}}}+{{({{m}^{2}}{{n}^{2}})}^{\frac{1}{3}}}=1\]
(e) None of these
Answer: (a)
Explanation:
Here given that
\[\cos ec\theta -\sin \theta =m\] and \[sec\theta -\cos \theta =n\]
\[cosec\theta -\sin \theta =m\]
\[\Rightarrow \] \[\frac{1}{\sin \theta }-\sin \theta =m\]
\[\Rightarrow \]\[\frac{{{\cos }^{2}}\theta }{\sin \theta }=m\] ....(i)
Similarly
\[\Rightarrow \] \[\frac{{{\sin }^{2}}\theta }{\cos \theta }=n\] ....(ii)
\[={{({{m}^{2}}n)}^{\frac{2}{3}}}={{\left[ \left( \frac{{{\cos }^{2}}\theta }{\sin \theta } \right).\frac{{{\sin }^{2}}\theta }{\cos \theta } \right]}^{\frac{2}{3}}}\] \[={{[{{\cos }^{3}}\theta ]}^{\frac{2}{3}}}\] \[={{\cos }^{2}}\theta \]
Similarly
\[{{(m{{n}^{2}})}^{\frac{2}{3}}}={{\sin }^{2}}\theta \]
\[\Rightarrow \]\[{{({{m}^{2}}n)}^{\frac{2}{3}}}+{{(m{{n}^{2}})}^{\frac{2}{3}}}={{\cos }^{2}}\theta +{{\sin }^{2}}\theta \] \[\Rightarrow \]\[{{({{m}^{2}}n)}^{\frac{2}{3}}}+{{(m{{n}^{2}})}^{\frac{2}{3}}}=1\]
Which one of the following identities is incorrect?
(a) \[{{\sin }^{4}}\theta +{{\cos }^{4}}\theta =1-2{{\sin }^{2}}\theta .{{\cos }^{2}}\theta \]
(b) \[{{\sin }^{4}}\theta +{{\cos }^{4}}\theta =1-2{{\sin }^{2}}\theta .{{\cos }^{2}}\theta \]
(c) \[{{\sin }^{6}}\theta +{{\cos }^{6}}\theta =1-4{{\sin }^{2}}\theta .{{\cos }^{2}}\theta \]
(d) \[{{\sec }^{4}}\theta -{{\sec }^{2}}\theta ={{\tan }^{4}}\theta +{{\tan }^{2}}\theta \]
(e) None of these
Answer: (c)
If \[(\sec \theta +\tan \theta )(\sec \alpha +\tan \alpha )(\sec \beta +\tan \beta )\] is equal to \[(\sec \theta -\tan \theta )\]\[(\sec \alpha -\tan \alpha )\]\[(\sec \beta -\tan \beta )\] then the each of the sides is equal to... .
(a) \[\sec \theta +\sec \alpha +\sec \beta \]
(b) \[\pm ({{\sec }^{2}}\theta -{{\tan }^{2}}\theta )\]
(c) \[\tan \theta +\tan \alpha +\tan \beta \]
(d) \[\sec \theta .\tan \theta +\sec \alpha .\tan \alpha .\tan \alpha +\sec \beta .\tan \beta \]
(e) None of these
Answer: (b)
If \[p=\tan \alpha +\sin \alpha \] and \[q=\tan \alpha -\sin \alpha \] then \[({{p}^{2}}-{{q}^{2}})\] is equal to.....
(a) \[pq\]
(b) \[\sqrt{pq}\]
(c) \[{{(pq)}^{\frac{2}{3}}}\]
(d) \[4{{(pq)}^{\frac{1}{2}}}\]
(e) None of these
Answer: (d)
You need to login to perform this action.
You will be redirected in
3 sec