Introduction to Trigonometry
Category : 10th Class
Introduction to Trigonometry
The trigonometric ratios for angle \[\theta \]:
(a) \[\sin \theta =\frac{side\,opposite\,to\,\theta }{Hypotenuse}=\frac{AB}{AC}\]
(b) \[\cos \theta =\frac{side\,adjacent\,to\,\theta }{Hypotenuse}=\frac{BC}{AC}\]
(c) \[\tan \theta =\frac{side\,opposite\,to\,\theta }{side\,adjacent\,to\,\theta }=\frac{AB}{BC}\]
(d) \[\cos ec\theta =\frac{Hypotenuse}{side\,opposite\,to\,\theta }=\frac{AC}{AB}\]
(e) \[sec\theta =\frac{Hypotenuse}{side\,adjacent\,to\,\theta }=\frac{AC}{BC}\]
(f) \[\cot \theta =\frac{side\,adjacent\,to\,\theta }{side\,opposite\,to\,\theta }=\frac{BC}{AB}\]
Note: (a) \[\sin \theta \] is a single symbol. It does not mean the product of sine and\[\theta \].
(b) In short, t-ratios is used for trigonometric ratios.
(c) Trigonometric ratios are real numbers.
(c) \[\frac{1}{\tan \theta }=\cot \theta \]
(a) \[\tan \theta =\frac{\sin \theta }{\cos \theta }\] (b) \[\cot \theta =\frac{\cos \theta }{\sin \theta }\]
Note: A trigonometric ratio depends on the magnitude of the angle and not on its size.
If\[\theta \] is acute, then
(a) \[\sin ({{90}^{o}}-\theta )=\cos \theta \]
(b) \[\cos ({{90}^{o}}-\theta )=\sin \theta \]
(c) \[\tan ({{90}^{o}}-\theta )=\cot \theta \]
(d) \[\cot ({{90}^{o}}-\theta )=\tan \theta \]
(e) \[\sec ({{90}^{o}}-\theta )=\cos ec\theta \]
(f) \[co\sec ({{90}^{o}}-\theta )=sec\theta \]
(a) \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\]
(b) \[{{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1\]
(c) \[co{{\sec }^{2}}\theta -{{\cot }^{2}}\theta =1\]
(a) \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\]
\[\Rightarrow \] \[{{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta \]
\[\Rightarrow \] \[\sin \theta =\sqrt{1-{{\cos }^{2}}\theta }\]
Similarly,
\[{{\cos }^{2}}\theta =1-{{\sin }^{2}}\theta \]
\[\Rightarrow \] \[\cos \theta =\sqrt{1-{{\sin }^{2}}\theta }\]
(b) \[{{\sec }^{2}}q-{{\tan }^{2}}\theta =1\]
\[\Rightarrow \] \[{{\sec }^{2}}\theta =1+{{\tan }^{2}}\theta \]
\[\Rightarrow \] \[\sec \theta =\sqrt{1+{{\tan }^{2}}\theta }\]
Similarly,
\[{{\tan }^{2}}\theta ={{\sec }^{2}}\theta -1\]
\[\Rightarrow \] \[\tan \theta =\sqrt{{{\sec }^{2}}\theta -1}\]
(a) \[\cos 3\theta =4{{\cos }^{3}}\theta -3\cos \theta \]
(b) \[\sin 2\theta =2\sin \theta \cos \theta \]
(c) \[\cos 2\theta ={{\cos }^{2}}\theta -{{\sin }^{2}}\theta \]
(d) \[\frac{{{\tan }^{2}}\theta }{1+{{\tan }^{2}}\theta }=si{{n}^{2}}\theta \]
(e) \[2{{\cos }^{2}}\theta -1=\frac{-1{{\tan }^{2}}\theta }{1+{{\tan }^{2}}\theta }\]
(f) \[\tan 2\theta =\frac{2\tan \theta }{1-{{\tan }^{2}}\theta }\]
|
\[\mathbf{sin\theta }\] |
\[\mathbf{cos\theta }\] |
\[\mathbf{tan\theta }\] |
\[\mathbf{cosec\theta }\] |
\[\mathbf{sec\theta }\] |
\[\mathbf{cot\theta }\] |
\[\mathbf{sin\theta }\] |
\[\sin \theta \] |
\[\sqrt{1-{{\cos }^{2}}\theta }\] |
\[\frac{1}{\sqrt{1-{{\tan }^{2}}\theta }}\] |
\[\frac{1}{\cos ec\theta }\] |
\[\frac{\sqrt{{{\sec }^{2}}\theta -1}}{\sec \theta }\] |
\[\frac{1}{\sqrt{1+{{\cot }^{2}}\theta }}\] |
\[\mathbf{cos\theta }\] |
\[\sqrt{1-{{\sin }^{2}}\theta }\] |
\[\cos \theta \] |
\[\frac{1}{\sqrt{1+{{\tan }^{2}}\theta }}\] |
\[\frac{\sqrt{\cos e{{c}^{2}}\theta -1}}{\cos ec\theta }\] |
\[\frac{1}{\sec \theta }\] |
\[\frac{\cot \theta }{\sqrt{1+{{\cot }^{2}}\theta }}\] |
\[\mathbf{tan\theta }\] |
\[\frac{\sin \theta }{\sqrt{1-{{\sin }^{2}}\theta }}\] |
\[\frac{\sqrt{1-{{\cos }^{2}}\theta }}{{{\cos }^{2}}\theta }\] |
\[\tan \theta \] |
\[\frac{1}{\sqrt{\cos e{{c}^{2}}\theta -1}}\] |
\[\sqrt{{{\sec }^{2}}\theta -1}\] |
\[\frac{1}{\cot \theta }\] |
\[\mathbf{cosec\theta }\] |
\[\frac{1}{\sin \theta }\] |
\[\frac{1}{\sqrt{1-{{\cos }^{2}}\theta }}\] |
\[\frac{\sqrt{1+{{\tan }^{2}}\theta }}{\tan \theta }\] |
\[\cos ec\theta \] |
\[\frac{\sec \theta }{\sqrt{{{\sec }^{2}}\theta -1}}\] |
\[\sqrt{1+{{\cot }^{2}}\theta }\] |
\[\mathbf{sec\theta }\] |
\[\frac{1}{\sqrt{1-{{\sin }^{2}}\theta }}\] |
\[\frac{1}{\cos \theta }\] |
\[\sqrt{1+{{\tan }^{2}}\theta }\] |
\[\frac{\sqrt{1+{{\tan }^{2}}\theta }}{\tan \theta }\] |
\[\sec \theta \] |
\[\frac{\sqrt{1+{{\cot }^{2}}\theta }}{\cot \theta }\] |
\[\mathbf{cot\theta }\] |
\[\frac{\sqrt{1-{{\sin }^{2}}\theta }}{\sin \theta }\] |
\[\frac{\cos \theta }{\sqrt{1-{{\cos }^{2}}\theta }}\] |
\[\frac{1}{\tan \theta }\] |
\[\sqrt{\cos e{{c}^{2}}\theta -1}\] |
\[\frac{1}{\sqrt{{{\sec }^{2}}\theta -1}}\] |
\[\cot \theta \] |
You need to login to perform this action.
You will be redirected in
3 sec