JEE Main & Advanced Chemistry Classification of Elements and Periodicity in Properties / तत्त्वों का वर्गीकरण एवं गुणों में आवर्ति Earlier Attempt To Classify Elements

Earlier Attempt To Classify Elements

Category : JEE Main & Advanced

(1) Dobereiner's law of triads (1829) : It was the classification of elements into groups of three elements each with similar properties such that the atomic weight of the middle element was the arithmetic mean of the other two e.g. Ca, Sr, Ba, Cl, Br, I etc.

(2) Telluric screw or Helix (1862) : It was proposed by Chancourtois.

(3) Newlands law of octaves (1864) : It was an arrangement of elements in order of increasing atomic weights in which it was observed that every eighth element had properties similar to those of the first just like the eighth node of an octave of music.

(4) Mendeleef's period law (1869) : The first significant classification was given by Mendeleeff in the form of periodic table, commonly known as Mendeleeff's periodic table. His periodic table was based on periodic law, ''The physical and chemical properties of elements are periodic functions of their atomic weights.''

In Mendeleef's periodic table elements are arranged in order of their increasing atomic weights in such a way that elements with similar properties are placed in the same group. It consists of seven horizontal rows called periods. These are numbered from 1 to 7.

Mendeleef's original table consists of 8 vertical columns called groups. These are numbered as I, II III... VIII. However, 9th vertical column called Zero group was added with the discovery of inert gases. Except for group VIII and zero, each group is further divided into two sub-groups designated as A and B. Group VIII consists of 9 elements arranged in three sets each containing three elements.

(5) Modern Periodic Law : The recent work has established that the fundamental property of an atom is atomic number and not atomic weight. Therefore, atomic number is taken as the basis of the classification of the elements. The modern periodic law was given by Moseley, it may be stated as : ''The properties of elements are periodic functions of their atomic number".

When atomic number is taken as the basis for classification of elements, many anomalies of Mendeleef's table disappear, such as the,

(i) Position of hydrogen : Dual behaviour of hydrogen is explained on the fact that it has one electron in its outermost orbit. When it loses its electron it gives H+ and behaves like alkali metals and when it gains an electron it gives H and behaves like halogens. Thus, it resembles with both the alkali metals and the halogens.

(ii) Dissimilar elements placed together : The lengths of periods are determined by the arrangement of electrons in different orbits. The period ends on the completion of last orbits (last members always being the inert gas). Different periods contain 2, 8, 18 or 32 elements. Now out of the two elements which every long period adds to the group, one resembles the typical elements while the other does not. This gives rise to formation of subgroups. This explains the inclusion of dissimilar elements in the same group but different subgroups.

(iii) Position of rare earth elements : The electronic arrangement of rare earths can be written as 2, 8, 18, (18 + x), 9, 2 where x varies from 0 to 13, i.e., from Lanthanum to Lutecium. The number of electrons in valency shell, in case of all the elements remain the same although the atomic number increases. Since they possess the same number of valency electrons, the chemical behaviour is also similar. This justifies their positions in the same group and in the same place of the periodic table.

(iv) Anomalous pairs of elements : Now the basis of classification is atomic number, therefore, this anomaly disappears as the elements occupy their normal position in the new periodic table.

(v) Position of isotopes :  Since the isotopes of same element possess same atomic number they should occupy one and the same position in the periodic table. (vi) Position of VIII group elements : In long periods 18 elements are to be distributed among 8 groups; 1 to 7 groups get 2 elements each and zero group accommodates inert elements, the rest three elements are placed at one place in a new group, known as VIII group. This lack of space justifies the induction of VIII group in the periodic table.

(vii) Transuranic elements : These elements form a series known as actinide series, it begins from actinium and ends at lawrencium (89-103). This series has been placed outside the periodic table. The electronic configuration of these elements can be written as 2, 8, 18, 32, (18 + x), 9, 2, where x varies from zero (for actinium) to 14 (for lawrencium). The number of valency electrons remains the same for all these elements although atomic number increases. Therefore, their chemical behaviour is similar. This justifies their position outside the periodic table at one place.  


You need to login to perform this action.
You will be redirected in 3 sec spinner