# JEE Main & Advanced Mathematics Definite Integrals Walli's Formula

Walli's Formula

Category : JEE Main & Advanced

$\int_{0}^{\pi /2}{{{\sin }^{n}}xdx}=\int_{0}^{\pi /2}{{{\cos }^{n}}xdx}$

$\int_{0}^{\pi /2}{{{\sin }^{n}}xdx}=\int_{0}^{\pi /2}{{{\cos }^{n}}xdx}=\left\{ \begin{matrix} \frac{n-1}{n}.\frac{n-3}{n-2}.\frac{n-5}{n-4}......\frac{2}{3},\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\text{when }n\text{ is odd} \\ \frac{n-1}{n}.\frac{n-3}{n-2}.\frac{n-5}{n-4}.......\frac{3}{4}.\frac{1}{2}.\frac{\pi }{2},\,\,\,\,\,\text{when }n\text{ is even} \\ \end{matrix} \right.$

$\int_{0}^{\pi /2}{{{\sin }^{m}}x{{\cos }^{n}}dx}=\frac{(m-1)\,(m-3).....(n-1)\,(n-3)....}{(m+n)\,(m+n-2)\,...(2\text{ or }1)}$,  [If $m,\,\,n$ are both odd positive integers or one odd positive integer]

$\int_{\,0}^{\,\pi /2}{{{\sin }^{m}}x{{\cos }^{n}}xdx}=\frac{(m-1)\,(m-3)............(n-1)\,(n-3)}{(m+n)\,(m+n-2)........(2\text{ or }1)}.\frac{\pi }{2}$, [If $m,\,\,n$ are both positive integers]

You need to login to perform this action.
You will be redirected in 3 sec