JEE Main & Advanced Mathematics Pair of Straight Lines Removal of the term \[\mathbf{xy}\] from \[\mathbf{f(X,}\,\mathbf{Y)=a}{{\mathbf{x}}^{\mathbf{2}}}\mathbf{+2hxy+b}{{\mathbf{y}}^{\mathbf{2}}}\] Without Changing the Origin

Removal of the term \[\mathbf{xy}\] from \[\mathbf{f(X,}\,\mathbf{Y)=a}{{\mathbf{x}}^{\mathbf{2}}}\mathbf{+2hxy+b}{{\mathbf{y}}^{\mathbf{2}}}\] Without Changing the Origin

Category : JEE Main & Advanced

Clearly, \[h\ne 0\]. Rotating the axes through an angle \[\theta \], we have, \[x=X\cos \theta -Y\sin \theta \] and  \[y=X\,\sin \theta +Y\cos \theta \]

 

\[\therefore \]   \[f(x,y)=a{{x}^{2}}+2hxy+b{{y}^{2}}\]

 

After rotation, new equation is

 

\[F(X,Y)=(a{{\cos }^{2}}\theta +2h\cos \theta \sin \theta +b{{\sin }^{2}}\text{ }\theta ){{X}^{2}}\]

 

\[+2\{(b-a)\cos \theta \sin \theta +h({{\cos }^{2}}\theta -{{\sin }^{2}}\theta )XY\]

 

 

 \[+(a{{\sin }^{2}}\theta -2h\cos \theta \sin \theta +b{{\cos }^{2}}\theta ){{Y}^{2}}\]

 

 

Now coefficient of \[XY=0\]. Then we get \[\cot 2\theta =\frac{a-b}{2h}\].

 

 

Usually, we use the formula, \[\tan 2\theta =\frac{2h}{a-b}\] for finding the angle of rotation \[\theta \]. However, if \[a=b\], we use \[\cot 2\theta =\frac{a-b}{2h}\] as in this case \[\tan 2\theta \] is not defined.


You need to login to perform this action.
You will be redirected in 3 sec spinner