JEE Main & Advanced Mathematics Vector Algebra Scalar or Dot Product

Scalar or Dot Product

Category : JEE Main & Advanced

(1) Scalar or Dot product of two vectors : If \[\mathbf{a}\] and \[\mathbf{b}\] are two non-zero vectors and \[\theta \] be the angle between them, then their scalar product (or dot product) is denoted by \[\mathbf{a}\,.\,\mathbf{b}\] and is defined as the scalar \[|\mathbf{a}|\,|\mathbf{b}|\cos \theta \], where \[|\mathbf{a}|\,\text{ and }|\mathbf{b}|\]are modulii of \[\mathbf{a}\] and \[\mathbf{b}\] respectively and \[0\le \theta \le \pi \]. Dot product of two vectors is a scalar quantity.

 

 

Angle between two vectors : If \[\mathbf{a},\,\mathbf{b}\] be two vectors inclined at an angle \[\theta \], then \[\mathbf{a}\,.\,\mathbf{b}=|\mathbf{a}|\,|\mathbf{b}|\,\cos \theta \]

 

 

\[\Rightarrow \] \[\cos \theta =\frac{\mathbf{a}\,.\,\mathbf{b}}{|\mathbf{a}|\,|\mathbf{b}|}\]\[\Rightarrow \] \[\theta ={{\cos }^{-1}}\left( \frac{\mathbf{a}\,.\,\mathbf{b}}{|\mathbf{a}|\,|\mathbf{b}|} \right)\]

 

 

If \[\mathbf{a}\,={{a}_{1}}\mathbf{i}+{{a}_{2}}\mathbf{j}+{{a}_{3}}\mathbf{k}\] and \[\mathbf{b}={{b}_{1}}\mathbf{i}+{{b}_{2}}\mathbf{j}+{{b}_{3}}\mathbf{k}\]; then

 

 

\[\theta ={{\cos }^{-1}}\left( \frac{{{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+{{a}_{3}}{{b}_{3}}}{\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}\sqrt{b_{1}^{2}+b_{2}^{2}+b_{3}^{2}}} \right)\].

 

 

(2) Properties of scalar product

 

 

(i) Commutativity : The scalar product of two vector is commutative i.e., \[\mathbf{a}\,.\,\mathbf{b}\,=\mathbf{b}\,.\,\mathbf{a}\].

 

 

(ii) Distributivity of scalar product over vector addition  The scalar product of vectors is distributive over vector addition i.e., (a) \[\mathbf{a}\,.\,(\mathbf{b}\,+\mathbf{c})\,=\,\mathbf{a}\,.\,\mathbf{b}+\mathbf{a}\,.\,\mathbf{c}\],     (Left distributivity) 

 

 

(b) \[(\mathbf{b}+\mathbf{c})\,.\,\mathbf{a}=\mathbf{b}\,.\,\mathbf{a}+\mathbf{c}\,.\,\mathbf{a}\],   (Right distributivity)

 

 

(iii) Let \[\mathbf{a}\] and \[\mathbf{b}\] be two non-zero vectors \[\mathbf{a}\,.\,\mathbf{b}=0\Leftrightarrow \mathbf{a}\bot \mathbf{b}\].

As \[\mathbf{i},\,\mathbf{j},\,\mathbf{k}\] are mutually perpendicular unit vectors along the co-ordinate axes, therefore, \[\mathbf{i}\,.\,\mathbf{j}=\mathbf{j}\,.\,\mathbf{i}=0\]; \[\mathbf{j}\,.\,\mathbf{k}=\mathbf{k}\,.\,\mathbf{j}=0;\] \[\mathbf{k}\,.\,\mathbf{i}=\mathbf{i}\,.\,\mathbf{k}\,=0\].

 

 

(iv) For any vector \[\mathbf{a},\,\text{ }\mathbf{a}\,.\,\mathbf{a}=|\mathbf{a}{{|}^{2}}\].

 

 

As \[\mathbf{i},\,\mathbf{j},\,\mathbf{k}\] are unit vectors along the co-ordinate axes, therefore \[\mathbf{i}\,.\,\mathbf{i}=|\mathbf{i}{{|}^{2}}=1\], \[\mathbf{j}\,.\,\mathbf{j}=|\mathbf{j}{{|}^{2}}=1\] and \[\mathbf{r}=\mathbf{a}+\lambda \mathbf{b}+\mu \mathbf{c}\]

 

 

(v) If m, n are scalars and \[\mathbf{a},\,\mathbf{b}\] be two vectors, then \[m\mathbf{a}\,.\,n\mathbf{b}=mn(\mathbf{a}\,.\,\mathbf{b})=(mn\,\mathbf{a})\,.\,\mathbf{b}=\mathbf{a}\,.\,(mn\,\mathbf{b})\]

 

 

(vi) For any vectors \[\mathbf{a}\] and \[\mathbf{b}\], we have

 

 

(a) \[\mathbf{a}\,.\ (-\mathbf{b})=-(\mathbf{a}\,.\,\mathbf{b})=(-\mathbf{a})\,.\,\mathbf{b}\]  

 

(b) \[(-\mathbf{a})\,.\,(-\mathbf{b})=\mathbf{a}\,.\,\mathbf{b}\]

 

 

(vii) For any two vectors \[\mathbf{a}\] and \[\mathbf{b}\], we have 

 

 

(a) \[|\mathbf{a}+\mathbf{b}{{|}^{2}}=\ |\mathbf{a}{{|}^{2}}+|\mathbf{b}{{|}^{2}}+\ 2\mathbf{a}\,.\,\mathbf{b}\]                

 

 

(b) \[|\mathbf{a}-\mathbf{b}{{|}^{2}}=\ |\mathbf{a}{{|}^{2}}+|\mathbf{b}{{|}^{2}}-\ 2\mathbf{a}\,.\,\mathbf{b}\]

 

 

(c) \[(\mathbf{a}+\mathbf{b})\,.\,(\mathbf{a}-\mathbf{b})=\ |\mathbf{a}{{|}^{2}}-|\mathbf{b}{{|}^{2}}\]                                 

 

 

(d) \[|\mathbf{a}+\mathbf{b}|\ =\ |\mathbf{a}|+|\mathbf{b}|\]\[\Rightarrow \] \[\mathbf{a}||\mathbf{b}\]

 

 

(e) \[|\mathbf{a}+\mathbf{b}{{|}^{2}}=\ |\mathbf{a}{{|}^{2}}+|\mathbf{b}{{|}^{2}}\Rightarrow \mathbf{a}\bot \mathbf{b}\]

 

 

(f) \[|\mathbf{a}+\mathbf{b}|\ =\ |\mathbf{a}-\mathbf{b}|\ \Rightarrow \mathbf{a}\bot \mathbf{b}\]

 

 

(3) Scalar product in terms of components: If \[\mathbf{a}={{a}_{1}}\mathbf{i}+{{a}_{2}}\mathbf{j}+{{a}_{3}}\mathbf{k}\] and \[\mathbf{b}={{b}_{1}}\mathbf{i}+{{b}_{2}}\mathbf{j}+{{b}_{3}}\mathbf{k}\], then, \[\mathbf{a}\,.\,\mathbf{b}={{a}_{1}}{{b}_{1}}\] \[+{{a}_{2}}{{b}_{2}}+{{a}_{3}}{{b}_{3}}\].

 

 

The components of \[\mathbf{b}\] along and perpendicular to \[\mathbf{a}\] are \[\left( \frac{\mathbf{a}\,.\ \mathbf{b}}{|\mathbf{a}{{|}^{2}}} \right)\,\mathbf{a}\] and \[\mathbf{b}-\left( \frac{\mathbf{a}\,.\,\mathbf{b}}{|\mathbf{a}{{|}^{2}}} \right)\,\mathbf{a}\] respectively.

 

 

(4) Work done by a force : 

 

 

Work done \[=|\mathbf{F}|\,|\overrightarrow{OA}|\,\cos \theta =\mathbf{F}\,.\,\overrightarrow{OA}\,=\mathbf{F}\,.\mathbf{d}\], where \[\mathbf{d}=\overrightarrow{OA}\]

 

 

Work done = (Force). (Displacement)

 

 

If a number of forces are acting on a particle, then the sum of the works done by the separate forces is equal to the work done by the resultant force.

 


You need to login to perform this action.
You will be redirected in 3 sec spinner