UPSC Biology Microbes in Human Welfare Microbes in Human Welfare

Microbes in Human Welfare

Category : UPSC

 Microbes in Human Welfare

 

1.           Microbes in Household Products

 

  • Micro-organisms such as Lactobacillus and others commonly called lactic acid bacteria (LAB) grow in milk and convert it to curd.
  • During growth, the LAB produce acids that coagulate and partially digest the milk proteins.
  • A small amount of curd added to the fresh milk as inoculum or starter contain millions of LAB, which at suitable temperatures multiply, thus converting milk to curd, which also improves its nutritional quality by increasing vitamin \[{{B}_{12}}\].
  • In our stomach too, the LAB play very beneficial role in checking diseasecausing microbes.
  • The dough, which is used for making foods such as dosa and idii is also fermented by bacteria. The puffed-up appearance of dough is due to the production of \[C{{O}_{2}}\], gas.
  • Similarly the dough, which is used for making bread, is fermented using baker's yeast (Saccharomyces cerevisiae).
  • A number of traditional drinks and foods are also made by fermentation by the microbes. 'Toddy', a traditional drink of some parts of southern India is made by fermenting sap from palms.
  • Microbes are also used to ferment fish, soyabean and bambooshoots to make foods. Cheese, is one of the oldest food items in which microbes were used.
  • Different varieties of cheese are known by their characteristic texture, flavour and taste, the specificity coming from the microbes used.
  • The 'Roquefort cheese' are ripened by growing a specific fungi on them, which gives them a particular flavour.

 

2.           Microbes in Industrial Products

 

  • Even in industry, microbes are used to synthesise a number of products valuable to human beings. Beverages and antibiotics are some examples. Production on an industrial scale, requires growing microbes in very large vessels called fermentors.
  • Microbes especially yeasts have been used from time immemorial for the production of beverages like wine, beer, whisky, brandy or rum.
  • For this purpose the same yeast Saccharomyces cerevisiae used for bread-making and commonly called brewer's yeast, is used for fermenting mailed cereals and fruit juices, to produce ethanol.
  • Antibiotics are chemical substances, which are produced by some microbes and can kill or retard the growth of other (disease-causing) microbes.
  • Penicillin was the first antibiotic to be discovered, and it was a chance discovery. Alexander Fleming while working on Staphylococci bacteria, once observed a mould growing in one of his unwashed culture plates around which Staphylococci could not grow. He found out that it was due to a chemical produced by the mould and he named it Penicillin after the mould Penicillium notatum. However, its full potential as an effective antibiotic was established much later by Ernest Chain and Howard Florey.
  • This antibiotic was extensively used to treat American soldiers wounded in World War II. Fleming, Chain and Florey were awarded the Nobel Prize in 1945, for this discovery.

 

3.           Chemicals, Enzymes and other Bioactive Molecules

 

  • Microbes are also used for commercial and industrial production of certain chemicals like organic acids, alcohols and enzymes.
  • Examples of acid producers are Aspergillus niger (a fungus) of citric acid, Acetobacter aceti (a bacterium) of acetic acid; Clostridium butylicum (a bacterium) of butyric acid and Lactobacillus (a bacterium) of lactic acid. Yeast (Saccharomyces cerevisiae) is used for commercial production of ethanol.
  • Lipases are used in detergent formulations and are helpful in removing oily stains from the laundry.
  • Bottled fruit juices bought from the market are clearer as compared to those made at home. This is because the bottled juices are clarified by the use of pectinases and proteases.
  • Streptokinase produced by the bacterium Streptococcus and modified by genetic engineering is used as a 'clot buster' for removing clots from the blood vessels of patients who have undergone myocardial infaction leading to heart attack.
  • Another bioactive molecule, cyclosporin A, that is used as an immunosuppressive agent in organ-transplant patients, is produced by the fungus Trichoderma polysporum.
  • Statins produced by the yeast Monascus purpureus have been commercialised as blood- cholesterol lowering agents. It acts by competitively inhibiting the enzyme responsible for synthesis of cholesterol.

 

4.           Microbes in Sewage Treatment

 

  • Municipal waste-water is also called sewage. It contains large amounts of organic matter and microbes. Many of which are pathogenic.
  • Before disposal, hence, sewage is treated in sewage treatment plants (STPs) to make it less polluting. Treatment of waste water is done by the heterotrophic microbes naturally present in the sewage. This treatment is carried out in two stages.
  • Primary treatment
    • These treatment steps basically involve physical removal of particles - large and small - from the sewage through filtration and sedimentation. These are removed in stages;
    • The primary effluent is passed into large aeration tanks where it is constantly agitated mechanically and air is pumped into it. This allows vigorous growth of useful aerobic microbes into floes (masses of bacteria associated with fungal filaments to form mesh like structures).
    • While growing, these microbes consume the major part of the organic matter in the effluent.
    • This significantly reduces the BOD (biochemical oxygen demand) of the effluent.
    • BOD refers to the amount of the oxygen that would be consumed if all the organic matter in one liter of water were oxidised by bacteria.
    • The greater the BOD of waste water, more is its polluting potential.
    • Once the BOD of sewage or waste water is reduced significantly, the effluent is then passed into a settling tank where the bacterial 'floes' are allowed to sediment. This sediment is called activated sludge. A small part of the activated sludge is pumped back into the aeration tank to serve as the inoculum.
    • The remaining major part of the sludge is pumped into large tanks called anaerobic sludge digesters. Here, other kinds of bacteria, which grow anaerobically, digest the bacteria and the fungi in the sludge. During this digestion, bacteria produce a mixture of gases such as methane, hydrogen sulphide and carbon dioxide. These gases form biogas and can be used as source of energy as it is inflammable.

 

  • Secondary treatment
  • The effluent from the secondary treatment plant is generally released into natural water bodies like rivers and streams.
  • Microbes play a major role in treating millions of gallons of waste water everyday across the globe. This methodology has been practiced for more than a century now, in almost all parts of the world. Till date, no manmade technology has been able to rival the microbial treatment of sewage.

 

5.           Microbes in Production of Biogas

 

  • Biogas is a mixture of gases (containing predominantly methane) produced by the microbial activity and which may be used as fuel.
  • In the examples cited in relation to fermentation of dough, cheese making and production of beverages, the main gas produced was \[C{{O}_{2}}\]. However, certain bacteria, which grow anaerobically on cellulosic material, produce large amount of methane along with \[C{{O}_{2}}\] and \[{{H}_{2}}\].
  • These bacteria are collectively called methanogens, and one such common bacterium is Methanobacterium. These bacteria are commonly found in the anaerobic sludge during sewage treatment. These bacteria are also present in the rumen (a part of stomach) of cattle. A lot of cellulosic material present in the food of cattle is also present in the rumen. In rumen, these bacteria help in the breakdown of cellulose and play an important role in the nutrition of cattle.
  • The excreta (dung) of cattle, commonly called gobar, is rich in these bacteria.
  • Dung can be used for generation of biogas, commonly called gobar gas. The biogas plant consists of a concrete tank (\[10-15\]feet deep) in which bio-wastes are collected and a slurry of dung is fed. A floating cover is placed over the slurry, which keeps on rising as the gas is produced in the tank due to the microbial activity.
  • The technology of biogas production was developed in India mainly due to the efforts of Indian Agricultural Research Institute (IARI) and Khadi and Village Industries Commission (KVIC).

 

6.           Microbes as Biocontrol Agents

 

  • Biocontrol refers to the use of biological methods for controlling plant diseases and pests.
  • In agriculture, there is a method of controlling pests that relies on natural predation rather than introduced chemicals.
  • A key belief of the organic farmer is that biodiversity furthers health. The more variety a landscape has, the more sustainable it is.
  • The organic farmer, therefore, works to create a system where the insects that are sometimes called pests are not eradicated, but instead are kept at manageable levels by a complex system of checks and balances within a living and vibrant ecosystem.
  • Contrary to the 'conventional' farming practices which often use chemical methods to kill both useful and harmful life forms indiscriminately.
  • The organic farmer holds the view that the eradication of the creatures that are often described as pests is not only possible, but also undesirable, for without them the beneficial predatory and parasitic insects which depend upon them as food or hosts would not be able to survive. Thus, the use of biocontrol measures will greatly reduce our dependence on toxic chemicals and pesticides.
  • An important part of the biological farming approach is to become familiar with the various life forms that inhabit the field, predators as well as pests, and also their life cycles, patterns of feeding and the habitats that they prefer. This will help develop appropriate means of biocontrol.
  • The very familiar beetle with red and black markings - the Ladybird, and Dragonflies are useful to get rid of aphids and mosquitoes, respectively.
  • An example of microbial biocontrol agents that can be introduced in order to control butterfly caterpillars is the bacteria Bacillus thuringiensis (often written as Bt).
  • These are available in sachets as dried spores which are mixed with water and sprayed onto vulnerable plants such as brassicas and fruit trees, where these are eaten by the insect larvae. In the gut of the larvae, the toxin is released and the larvae get killed. The bacterial disease will kill the caterpillars, but leave other insects unharmed.
  • Because of the development of methods of genetic engineering in the last decade or so, the scientists have introduced B. thuringiensis toxin genes into plants. Such plants are resistant to attack by insect pests. Bt-cotton is one such example.
  • A biological control being developed for use in the treatment of plant disease is the fungus Trichoderma. Trichoderma species are free-living fungi that are very common in the root ecosystems. They are effective biocontrol agents of several plant pathogens.
  • Baculoviruses are pathogens that attack insects and other arthropods.

 

7.           Microbes as Biofertilisers

 

  • Biofertilisers are organisms that enrich the nutrient quality of the soil. The main sources of biofertilisers are bacteria, fungi and cyanobacteria.
  • The nodules on the roots of leguminous plants formed by the symbiotic association of Rhizobium. These bacteria fix atmospheric nitrogen into organic forms, which is used by the plant as nutrient.
  • Other bacteria can fix atmospheric nitrogen while free-living in the soil (examples Azospirillum and Azotobacter), thus enriching the nitrogen content of the soil.
  • Fungi are also known to form symbiotic associations with plants (mycorrhiza). Many members of the genus Glomus form mycorrhiza. The fungal symbiont in these associations absorbs phosphorus from soil and passes it to the plant.
  • Plants having such associations show other benefits also, such as resistance to root-bome pathogens, tolerance to salinity and drought, and an overall increase in plant growth and development.
  • Cyanobacteria are autotrophic microbes widely distributed in aquatic and terrestrial environments many of which can fix atmospheric nitrogen, e.g. Anabaena, Nostoc, Oscillatoria, etc.
  • In paddy fields, cyanobacteria serve as an important biofertiliser.
  • Blue green algae also add organic matter to the soil and increase its fertility.

Other Topics

NCERT Extracts - Microbes in Human Welfare


You need to login to perform this action.
You will be redirected in 3 sec spinner