-
question_answer1)
Q is a point in the interior of a rectangle ABCD. If \[\mathbf{QA}=\mathbf{4}\]cm, \[QB=3\]cm and \[\mathbf{QC}=\mathbf{5}\] cm, then the length of QD (in cm) is
A)
\[4\sqrt{2}\] done
clear
B)
\[5\sqrt{2}\] done
clear
C)
\[\sqrt{34}\] done
clear
D)
\[\sqrt{41}\] done
clear
View Solution play_arrow
-
question_answer2)
The length of the two adjacent sides of a rectangle inscribed in a circle are 3 cm and 4 cm respectively. Then the radius of the circle will be
A)
6 cm done
clear
B)
2.5 cm done
clear
C)
8 cm done
clear
D)
8.5 cm done
clear
View Solution play_arrow
-
question_answer3)
PQRA is a rectangle, \[\mathbf{AP}=\mathbf{24}\]cm. \[\mathbf{PQ}=\mathbf{8}\]cm. \[\Delta \mathbf{ABC}\] is a triangle whose vertices lie on the sides of PQRA such that BQ = 2 cm and \[\mathbf{QC}=\mathbf{18}\]cm. Then the length of the line joining the mid points of the sides AB and BC is
A)
\[4\sqrt{2}\]cm. done
clear
B)
5 cm done
clear
C)
6 cm. done
clear
D)
10 cm. done
clear
View Solution play_arrow
-
question_answer4)
The length of the diagonal BD of the parallelogram \[\Delta \mathbf{BCD}\] is 12 cm. If P and Q are the centroid of the \[\Delta \mathbf{ABC}\] and \[\Delta \mathbf{ADC}\] respectively then the length of the line segment PQ is
A)
4 cm done
clear
B)
4 cm done
clear
C)
9 cm done
clear
D)
12 cm done
clear
View Solution play_arrow
-
question_answer5)
ABCD is a cyclic trapezium whose sides AD and BC are parallel to each other. If \[\angle \mathbf{ABC}=\mathbf{7}{{\mathbf{5}}^{{}^\circ }}\], then the measure of the \[\angle \mathbf{BCD}\] is
A)
\[{{162}^{{}^\circ }}\] done
clear
B)
\[{{18}^{{}^\circ }}\] done
clear
C)
\[{{108}^{{}^\circ }}\] done
clear
D)
\[{{75}^{{}^\circ }}\] done
clear
View Solution play_arrow
-
question_answer6)
ABCD is a cyclic quadrilateral and O is the centre of the circle. If \[\angle \mathbf{COD}=\mathbf{12}{{\mathbf{0}}^{{}^\circ }}\]and \[\angle \mathbf{BAC}=\mathbf{6}{{\mathbf{0}}^{{}^\circ }}\], then the value of \[\angle \mathbf{BCD}\] is equal to
A)
\[{{70}^{{}^\circ }}\] done
clear
B)
\[{{90}^{{}^\circ }}\] done
clear
C)
\[{{60}^{{}^\circ }}\] done
clear
D)
\[{{80}^{{}^\circ }}\] done
clear
View Solution play_arrow
-
question_answer7)
ABCD is a cyclic quadrilateral and AD is a diameter. If \[\angle \mathbf{DAC}=\mathbf{6}{{\mathbf{5}}^{{}^\circ }}\] then value of \[\angle \mathbf{ABC}\] is
A)
\[{{55}^{{}^\circ }}\] done
clear
B)
\[{{35}^{{}^\circ }}\] done
clear
C)
\[{{155}^{{}^\circ }}\] done
clear
D)
\[{{125}^{{}^\circ }}\] done
clear
View Solution play_arrow
-
question_answer8)
ABCD is a cyclic quadrilateral. AB and DC when produced meet at P, if \[PA=12\]cm., PB = 8 cm, PC = 6 cm, then the length (in cm ) of PD is
A)
8 cm done
clear
B)
6cm done
clear
C)
10 cm done
clear
D)
16 cm done
clear
View Solution play_arrow
-
question_answer9)
In a cyclic quadrilateral ABCD, \[\angle BCD={{130}^{{}^\circ }}\]and passes through the centre of the circle. Then\[\angle \mathbf{ABD}=\]?
A)
\[{{30}^{{}^\circ }}\] done
clear
B)
\[{{40}^{{}^\circ }}\] done
clear
C)
\[{{50}^{{}^\circ }}\] done
clear
D)
\[{{60}^{{}^\circ }}\] done
clear
View Solution play_arrow
-
question_answer10)
PQRS is a rhombus. A straight line through R cuts PS produced at X and PQ produced at Y. If \[SX=\frac{1}{2}PQ\], then the ratio of the length of QY and PQ is
A)
2:1 done
clear
B)
1 : 2 done
clear
C)
\[1:1\] done
clear
D)
3:1 done
clear
View Solution play_arrow
-
question_answer11)
In a quadrilateral ABCD, the bisectors of \[\angle \mathbf{A}\] and \[\angle B\] meet at O. If \[\angle C={{80}^{{}^\circ }}\]and \[\angle \mathbf{D}=\mathbf{12}{{\mathbf{0}}^{{}^\circ }}\], then measure of \[\angle \mathbf{AOB}\] is
A)
\[{{40}^{{}^\circ }}\] done
clear
B)
\[{{60}^{{}^\circ }}\] done
clear
C)
\[{{80}^{{}^\circ }}\] done
clear
D)
\[{{100}^{{}^\circ }}\] done
clear
View Solution play_arrow
-
question_answer12)
If PQRS be a rhombus, PR is its smallest diagonal and \[\angle \mathbf{PQR}=\mathbf{6}{{\mathbf{0}}^{{}^\circ }}\], find length of a side of the rhombus when \[\mathbf{PR}=\mathbf{6}\]cm.
A)
6 cm done
clear
B)
3 cm done
clear
C)
\[6\sqrt{2}\]cm done
clear
D)
\[3\sqrt{3}\]cm done
clear
View Solution play_arrow
-
question_answer13)
PQRS is a trapezium in which \[\mathbf{PS}\parallel \mathbf{QR}\] and \[PQ=SR=12\]m. then the distance of PS from QR is:
A)
\[10\sqrt{2}\]m done
clear
B)
\[4\sqrt{2}\]m done
clear
C)
\[5\sqrt{2}\]m done
clear
D)
\[6\sqrt{2}\]m done
clear
View Solution play_arrow
-
question_answer14)
In a trapezium ABCD If \[\mathbf{AB}\parallel \mathbf{CD}\], thee \[\mathbf{A}{{\mathbf{C}}^{2}}+\mathbf{B}{{\mathbf{D}}^{2}}\]is equal to:
A)
\[B{{C}^{2}}+A{{D}^{2}}+2AB.CD\] done
clear
B)
\[A{{B}^{2}}+C{{D}^{2}}+2AD.BC\] done
clear
C)
\[A{{B}^{2}}+C{{D}^{2}}+2AB.CD\] done
clear
D)
\[B{{C}^{\mathbf{2}}}+A{{D}^{2}}+2BC.AD\] done
clear
View Solution play_arrow
-
question_answer15)
The parallel sides of a trapezium are x and y respectively. The line joining the points of its non-parallel sides will be:
A)
\[\sqrt{xy}\] done
clear
B)
\[\frac{2xy}{x+y}\] done
clear
C)
\[\frac{\left( x+y \right)}{2}\] done
clear
D)
\[\frac{1}{4}(x-y)\] done
clear
View Solution play_arrow
-
question_answer16)
ABCD is a trapezium in which \[\mathbf{AB}\parallel \mathbf{CD}\] and \[AB=3CD\]Its diagonals intersect other at O then the ratio of the areas of the triangles AOB and COD is:
A)
1 : 2 done
clear
B)
2 : 1 done
clear
C)
9 : 1 done
clear
D)
1 : 4 done
clear
View Solution play_arrow
-
question_answer17)
The sides BA and DC of quadrilateral ABCD are produced as shown la figure. Them which of the following statements is correct?
A)
\[2{{x}^{{}^\circ }}+{{y}^{{}^\circ }}={{a}^{{}^\circ }}+{{b}^{{}^\circ }}\] done
clear
B)
\[{{x}^{{}^\circ }}+\frac{1}{2}{{y}^{{}^\circ }}=\frac{{{a}^{{}^\circ }}+{{b}^{{}^\circ }}}{2}\] done
clear
C)
\[{{x}^{{}^\circ }}+{{y}^{{}^\circ }}={{a}^{{}^\circ }}+{{b}^{{}^\circ }}\] done
clear
D)
\[{{x}^{{}^\circ }}+{{a}^{{}^\circ }}={{y}^{{}^\circ }}+{{b}^{{}^\circ }}\] done
clear
View Solution play_arrow
-
question_answer18)
In the quadrilateral ABCD, the line segments bisecting \[\angle \mathbf{C}\] and \[\angle D\] at E. Then the correct statement is:
A)
\[\angle A+\angle B=\angle CED\] done
clear
B)
\[\angle A+\angle B\text{=}2\angle CED\] done
clear
C)
\[\angle A+\angle B=3\angle CED\] done
clear
D)
None of these done
clear
View Solution play_arrow
-
question_answer19)
If ABCD is a quadrilateral whose diagondals AC and BD intersect at O, then:
A)
\[\left( AB+BC+CD+DA \right)<\left( AC+BD \right)\] done
clear
B)
\[\left( AB+BC+CD+DA \right)>2\left( AC+BD \right)\] done
clear
C)
\[\left( AB+BC+CD+DA \right)>\left( AC+BD \right)\] done
clear
D)
\[AB+BC+CD+DA=2\left( AC+BD \right)\] done
clear
View Solution play_arrow
-
question_answer20)
In the adjoining figure, ABCD is a quadrilateral in which AB is the longest side and CD is the shortest side, then:
A)
\[\angle C>\angle A\text{ }and\text{ }\angle D>\angle B\] done
clear
B)
\[\angle C>\angle A\text{ }and\text{ }\angle B>\angle D\] done
clear
C)
\[\angle C<A\text{ }and\text{ }\angle D<\angle B\] done
clear
D)
\[\angle C<\angle A\text{ }and\text{ }\angle D=\angle B\] done
clear
View Solution play_arrow
-
question_answer21)
In the given figure, ABCD is a square. A line segment DX cuts the side BC at X and the diagonal AC at 0 Such that \[\angle \mathbf{COD}=\mathbf{11}{{\mathbf{5}}^{{}^\circ }}\]and \[\angle \mathbf{OXC}={{\mathbf{x}}^{{}^\circ }}\]. The value of x is:
A)
\[{{40}^{{}^\circ }}\] done
clear
B)
\[{{60}^{{}^\circ }}\] done
clear
C)
\[{{80}^{{}^\circ }}\] done
clear
D)
\[{{85}^{{}^\circ }}\] done
clear
View Solution play_arrow
-
question_answer22)
In the given figure AE=BC and \[\mathbf{AE}\parallel \mathbf{BC}\] and the three sides AB, CD and ED are equal in length. If \[\mathbf{m}\angle \mathbf{A}=\mathbf{10}{{\mathbf{5}}^{{}^\circ }}\], find measures of \[\angle \,\mathbf{BCD}\]:
A)
\[{{138}^{{}^\circ }}\] done
clear
B)
\[{{165}^{{}^\circ }}\] done
clear
C)
\[{{88}^{{}^\circ }}\] done
clear
D)
None of these done
clear
View Solution play_arrow
-
question_answer23)
A point X inside a rectangle PQRS is joined to the vertices then, which of the following is true?
A)
area\[\left( \Delta PSX \right)\]=area\[\left( \Delta PXQ \right)\] done
clear
B)
\[area\left( \Delta PSX \right)+area\left( \Delta PXQ \right)=area\left( RSX \right)+area\left( \Delta RQX \right)\] done
clear
C)
\[area\left( \Delta PXS \right)+area\left( \Delta RXQ \right)=area\left( \Delta SRX \right)+area\left( \Delta PXQ \right)\] done
clear
D)
None of these done
clear
View Solution play_arrow
-
question_answer24)
In a rectangle ABCD, P, Q are the mid-points of BC and AD respectively and R is any point on PQ, then \[\Delta \mathbf{ARB}\] equals:
A)
\[\frac{1}{2}\left( [\,\,\,\,]\,ABCD \right)\] done
clear
B)
\[\frac{1}{3}\left( [\,\,\,]\,ABCD \right)\] done
clear
C)
\[\frac{1}{4}\left( [\,\,\,]\,ABCD \right)\] done
clear
D)
None of these done
clear
View Solution play_arrow
-
question_answer25)
A quadrilateral is a parallelogram if:
A)
A pair of opposite sides is equal done
clear
B)
A pair of opposite sides is equal and parallel done
clear
C)
A pair of opposite sides is parallel done
clear
D)
None of these done
clear
View Solution play_arrow
-
question_answer26)
In the adjoining figure, the value of x and y are:
A)
\[{{5}^{{}^\circ }},{{4}^{{}^\circ }}\] done
clear
B)
\[{{3}^{{}^\circ }},{{4}^{{}^\circ }}\] done
clear
C)
\[{{2}^{{}^\circ }},{{1}^{{}^\circ }}\] done
clear
D)
None of these done
clear
View Solution play_arrow
-
question_answer27)
In the adjoining figure ABCD is a parallelogram and E, F are the centroids of \[\Delta \mathbf{ABD}\] and \[\Delta \mathbf{BCD}\] respectively, then EF equals:
A)
AE done
clear
B)
BE done
clear
C)
CE done
clear
D)
DE done
clear
View Solution play_arrow
-
question_answer28)
In given figure, ABCD is a rhombus. If \[\angle OAB={{35}^{{}^\circ }}\], Then the value of x is
A)
\[{{25}^{{}^\circ }}\] done
clear
B)
\[{{35}^{{}^\circ }}\] done
clear
C)
\[{{55}^{{}^\circ }}\] done
clear
D)
\[{{70}^{{}^\circ }}\] done
clear
View Solution play_arrow
-
question_answer29)
ABCD is a quadrilateral such that \[\angle \mathbf{D}=\mathbf{9}{{\mathbf{0}}^{{}^\circ }}\]. A circle C(O, r) touches the sides AB, BC, CD and DA at P, Q R and S respectively. If \[\mathbf{BC}=\mathbf{38}\]cm. \[\mathbf{CD}=\mathbf{25}\]cm and \[\mathbf{BP}=\mathbf{27}\]cm then radius 'r, is equal to
A)
14 cm done
clear
B)
11 cm done
clear
C)
12 cm done
clear
D)
10 cm done
clear
View Solution play_arrow
-
question_answer30)
Find each interior and exterior angle of regular polygon having 30 sides.
A)
\[{{154}^{{}^\circ }},{{34}^{{}^\circ }}\] done
clear
B)
\[{{168}^{{}^\circ }},{{12}^{{}^\circ }}\] done
clear
C)
\[{{122}^{{}^\circ }},{{15}^{{}^\circ }}\] done
clear
D)
\[{{121}^{{}^\circ }},{{58}^{{}^\circ }}\] done
clear
View Solution play_arrow
-
question_answer31)
In the given figure, ABCD is a parallelogram in which \[\angle \mathbf{BAD}=\mathbf{7}{{\mathbf{5}}^{{}^\circ }}\] and \[\angle CBD={{60}^{{}^\circ }}\]. Then, \[\angle \mathbf{BDC}=\]?
A)
\[{{60}^{{}^\circ }}\] done
clear
B)
\[{{75}^{{}^\circ }}\] done
clear
C)
\[{{45}^{{}^\circ }}\] done
clear
D)
\[{{50}^{{}^\circ }}\] done
clear
View Solution play_arrow
-
question_answer32)
In a quadrilateral ABCD, If AO and BO are the bisectors of \[\angle \mathbf{A}\] and \[\angle B\] respectively \[\angle \mathbf{C}=\mathbf{3}{{\mathbf{0}}^{{}^\circ }}\]and\[\angle \mathbf{D}=\mathbf{7}{{\mathbf{0}}^{{}^\circ }}\]. Then, \[\angle \mathbf{AOB}=\]?
A)
\[{{40}^{{}^\circ }}\] done
clear
B)
\[{{50}^{{}^\circ }}\] done
clear
C)
\[{{80}^{{}^\circ }}\] done
clear
D)
\[{{100}^{{}^\circ }}\] done
clear
View Solution play_arrow
-
question_answer33)
The diagonals AC and BD of a parallelogram ABCD intersect each other at the O such that \[\angle \mathbf{DAC}=\mathbf{4}{{\mathbf{0}}^{{}^\circ }}\]and \[\angle \mathbf{AOB}=\mathbf{8}{{\mathbf{0}}^{{}^\circ }}\], Then \[\angle \mathbf{DBC}=\]?
A)
\[{{40}^{{}^\circ }}\] done
clear
B)
\[{{35}^{{}^\circ }}\] done
clear
C)
\[{{45}^{{}^\circ }}\] done
clear
D)
\[{{50}^{{}^\circ }}\] done
clear
View Solution play_arrow
-
question_answer34)
The lengths of the diagonals of a rhombus are 16 cm and 12 cm. The length of side of the rhombus is
A)
10 cm done
clear
B)
12 cm done
clear
C)
9 cm done
clear
D)
8 cm done
clear
View Solution play_arrow
-
question_answer35)
The length of each side of a rhombus is 10 cm and of its diagonals 1$ of 16cm. The length of the other diagonal is
A)
13 cm done
clear
B)
12 cm done
clear
C)
\[2\sqrt{39}\] cm done
clear
D)
6 cm done
clear
View Solution play_arrow
-
question_answer36)
In a rhombus ABCD,, its diagonal intersect at O then \[\angle \mathbf{AOB}\] is
A)
\[{{180}^{{}^\circ }}\] done
clear
B)
\[{{0}^{{}^\circ }}\] done
clear
C)
\[{{90}^{{}^\circ }}\] done
clear
D)
\[{{60}^{{}^\circ }}\] done
clear
View Solution play_arrow
-
question_answer37)
In. the adjoining kite, diagonals intersect at O If \[\angle ABO={{32}^{{}^\circ }}\] and \[\angle \left( OCD \right)=\mathbf{4}{{\mathbf{0}}^{{}^\circ }}\], \[\angle \mathbf{ABC}\]
A)
\[{{60}^{{}^\circ }}\] done
clear
B)
\[{{64}^{{}^\circ }}\] done
clear
C)
\[{{75}^{{}^\circ }}\] done
clear
D)
\[{{90}^{{}^\circ }}\] done
clear
View Solution play_arrow
-
question_answer38)
In the given figure, ABCD Is a \[\parallel \] gm and E is the mid-point of BC Also DE and AB when produced meet at F, Then,
A)
\[AF=\frac{3}{2}AB\] done
clear
B)
\[AF=2AB\] done
clear
C)
\[AF=3AB\] done
clear
D)
\[A{{F}^{2}}=2A{{B}^{2}}\] done
clear
View Solution play_arrow
-
question_answer39)
In the given figure, ABCD is a parallelogram, M is the mid-point of BD and BD bisects \[\angle B\] as well as \[\angle D\]. Then \[\angle AMB=\]?
A)
\[{{45}^{{}^\circ }}\] done
clear
B)
\[{{60}^{{}^\circ }}\] done
clear
C)
\[{{90}^{{}^\circ }}\] done
clear
D)
\[{{30}^{{}^\circ }}\] done
clear
View Solution play_arrow
-
question_answer40)
In the adjoining figure, AP and BP are angle bisectors of \[\angle \mathbf{A}\] and \[\angle B\] which meets At P in the parallelogram ABCD. Then\[\mathbf{2}\angle \mathbf{APB=?}\]
A)
\[\angle C+\angle D\] done
clear
B)
\[\angle A+\angle C\] done
clear
C)
\[\angle B+\angle D\] done
clear
D)
\[2\angle C\] done
clear
View Solution play_arrow