-
question_answer1)
Evaluate: \[\mathbf{lo}{{\mathbf{g}}_{\mathbf{4}}}\mathbf{3\times lo}{{\mathbf{g}}_{\mathbf{27}}}\mathbf{64}\]
A)
\[\frac{1}{2}\] done
clear
B)
\[\frac{2}{3}\] done
clear
C)
1 done
clear
D)
\[\frac{1}{3}\] done
clear
View Solution play_arrow
-
question_answer2)
Evaluate: \[lo{{g}_{16}}64~-lo{{g}_{64}}16\]
A)
6 done
clear
B)
\[\frac{1}{6}\] done
clear
C)
\[\frac{6}{5}\] done
clear
D)
\[\frac{5}{6}\] done
clear
View Solution play_arrow
-
question_answer3)
Find the value of x which satisfies the relation\[lo{{g}_{10}}2+lo{{g}_{10}}(\mathbf{4x}+1)=\mathbf{lo}{{\mathbf{g}}_{10}}(\mathbf{x}+1)+1\]
A)
4 done
clear
B)
\[-4\] done
clear
C)
1/4 done
clear
D)
not defined done
clear
View Solution play_arrow
-
question_answer4)
Simplify: \[\left[ \frac{1}{{{\log }_{xy}}(xyz)}+\frac{1}{{{\log }_{yz}}(xyz)}+\frac{1}{{{\log }_{zx}}(xyz)} \right]\]
A)
1 done
clear
B)
2 done
clear
C)
3 done
clear
D)
0 done
clear
View Solution play_arrow
-
question_answer5)
The value of log, 81 is equal to:
A)
\[-27\] done
clear
B)
\[-4\] done
clear
C)
4 done
clear
D)
27 done
clear
View Solution play_arrow
-
question_answer6)
\[\frac{\log \sqrt[3]{6}}{\log 6}\]is equal to:
A)
\[\frac{1}{\sqrt{8}}\] done
clear
B)
\[\frac{1}{4}\] done
clear
C)
\[\frac{1}{3}\] done
clear
D)
\[\frac{1}{8}\] done
clear
View Solution play_arrow
-
question_answer7)
Which of the following statements is correct?
A)
\[lo{{g}_{10}}10=0\] done
clear
B)
\[log\left( 2-3 \right)=log\left( 2\times 3 \right)\] done
clear
C)
\[lo{{g}_{10}}1=1\] done
clear
D)
\[log\left( 1\times 2\times 3 \right)=log1+log2+log3\] done
clear
View Solution play_arrow
-
question_answer8)
If \[{{\log }_{2}}\left[ {{\log }_{3}}\left( {{\log }_{2}}x \right) \right]=1\], then x is equal to:
A)
0 done
clear
B)
12 done
clear
C)
128 done
clear
D)
512 done
clear
View Solution play_arrow
-
question_answer9)
\[\log \mathbf{l60}\]is equal to:
A)
\[2\,log2+3\,log3\] done
clear
B)
\[3\,log2+2\,log3\] done
clear
C)
\[3\,log2+2\,log3-log5\] done
clear
D)
\[5\,log2+log5\] done
clear
View Solution play_arrow
-
question_answer10)
If \[lo{{g}_{a}}(ab)=x,\]then \[lo{{g}_{b}}(ab)\]is:
A)
\[\frac{1}{x}\] done
clear
B)
\[\frac{x}{1+x}\] done
clear
C)
\[\frac{x}{1-x}\] done
clear
D)
\[\frac{x}{x-1}\] done
clear
View Solution play_arrow
-
question_answer11)
If \[log2=x,log3=y\] and log\[\mathbf{7}=\mathbf{z}\], then the value of \[\mathbf{log}\left( \mathbf{8}.\sqrt[3]{\mathbf{21}} \right)\]is:
A)
\[2x+\frac{2}{3}y-\frac{1}{3}z\] done
clear
B)
\[2x+\frac{2}{3}y+\frac{1}{3}z\] done
clear
C)
\[2x-\frac{2}{3}y+\frac{1}{3}z\] done
clear
D)
\[3x+\frac{1}{3}y+\frac{1}{3}z\] done
clear
View Solution play_arrow
-
question_answer12)
If \[lo{{g}_{8}}x+lo{{g}_{8}}\frac{1}{6}=\frac{1}{3}\], then the value of s Is:
A)
12 done
clear
B)
16 done
clear
C)
18 done
clear
D)
24 done
clear
View Solution play_arrow
-
question_answer13)
If \[lo{{g}_{5}}x+2{{\log }_{25}}x+3lo{{g}_{12}}x=9,\] then x = ________.
A)
6 done
clear
B)
36 done
clear
C)
125 done
clear
D)
None of these done
clear
View Solution play_arrow
-
question_answer14)
If \[lo{{g}_{10}}5+lo{{g}_{10}}(5x+1)=log\left( x+5 \right)+1,\] then x is equal to:
A)
1 done
clear
B)
3 done
clear
C)
5 done
clear
D)
10 done
clear
View Solution play_arrow
-
question_answer15)
if \[lo{{g}_{5}}({{x}^{2}}+x)-lo{{g}_{10}}(x+1)=2\], then the value of x is:
A)
5 done
clear
B)
10 done
clear
C)
25 done
clear
D)
32 done
clear
View Solution play_arrow
-
question_answer16)
The value of \[\left( \frac{1}{{{\log }_{3}}60}+\frac{1}{{{\log }_{4}}60}+\frac{1}{{{\log }_{5}}60} \right)\] is:
A)
0 done
clear
B)
1 done
clear
C)
5 done
clear
D)
60 done
clear
View Solution play_arrow
-
question_answer17)
The value of \[\left( \mathbf{lo}{{\mathbf{g}}_{3}}\mathbf{4} \right)\left( \mathbf{lo}{{\mathbf{g}}_{4}}\mathbf{5} \right)\left( \mathbf{lo}{{\mathbf{g}}_{5}}\mathbf{6} \right)\left( \mathbf{lo}{{\mathbf{g}}_{6}}\mathbf{7} \right)\left( \mathbf{lo}{{\mathbf{g}}_{7}}\mathbf{8} \right)\left( \mathbf{lo}{{\mathbf{g}}_{8}}\mathbf{9} \right)\] is :
A)
2 done
clear
B)
7 done
clear
C)
8 done
clear
D)
33 done
clear
View Solution play_arrow
-
question_answer18)
The value of \[{{16}^{{{\log }_{4}}5}}\]is:
A)
\[\frac{5}{64}\] done
clear
B)
5 done
clear
C)
16 done
clear
D)
25 done
clear
View Solution play_arrow
-
question_answer19)
\[\left[ \frac{1}{\left( {{\log }_{x}}yz \right)+1}+\frac{1}{\left( {{\log }_{y}}zx \right)+1}+\frac{1}{\left( {{\log }_{z}}xz \right)+1} \right]\]is equal to :
A)
1 done
clear
B)
\[\frac{3}{2}\] done
clear
C)
2 done
clear
D)
3 done
clear
View Solution play_arrow
-
question_answer20)
If \[lo{{g}_{10}}8=x\], then \[lo{{g}_{10}}\left( \frac{1}{80} \right)\] is equal to:
A)
\[-\left( 1+x \right)\] done
clear
B)
\[{{\left( 1+x \right)}^{-1}}\] done
clear
C)
\[\frac{a}{10}\] done
clear
D)
\[\frac{1}{10a}\] done
clear
View Solution play_arrow
-
question_answer21)
If \[x={{y}^{x}},y={{z}^{y}}\]and \[z={{x}^{y}}\], then the value of xyz equal to;
A)
-1 done
clear
B)
0 done
clear
C)
1 done
clear
D)
xyz done
clear
View Solution play_arrow
-
question_answer22)
\[\frac{\mathbf{lo}{{\mathbf{g}}_{\mathbf{5}}}\mathbf{6}}{\mathbf{lo}{{\mathbf{g}}_{\mathbf{5}}}\mathbf{2+1}}=\]
A)
\[lo{{g}_{2}}6\] done
clear
B)
\[lo{{g}_{2}}5\] done
clear
C)
\[lo{{g}_{10}}6\] done
clear
D)
\[lo{{g}_{10}}30\] done
clear
View Solution play_arrow
-
question_answer23)
If \[\mathbf{x=lo}{{\mathbf{g}}_{\mathbf{3}}}\mathbf{27}\] and \[\mathbf{y=lo}{{\mathbf{g}}_{\mathbf{9}}}\mathbf{27}\] then \[\frac{\mathbf{1}}{\mathbf{x}}\mathbf{+}\frac{\mathbf{1}}{\mathbf{y}}\mathbf{=}\]______.
A)
\[\frac{1}{3}\] done
clear
B)
\[\frac{1}{9}\] done
clear
C)
3 done
clear
D)
1 done
clear
View Solution play_arrow
-
question_answer24)
If \[l\mathbf{og}\left( \mathbf{0}.\mathbf{37} \right)=\overline{1}.\mathbf{756}\], then the value of \[\mathbf{log37}+\mathbf{log}{{\left( \mathbf{0}.\mathbf{37} \right)}^{\mathbf{3}}}+\mathbf{log}\sqrt{0.\mathbf{37}}\]Is:
A)
0.902 done
clear
B)
\[\overline{2}.146\] done
clear
C)
3.444 done
clear
D)
\[\overline{1}.146\] done
clear
View Solution play_arrow
-
question_answer25)
The value of \[\frac{1}{1+{{\log }_{ab}}c}+\frac{1}{1+{{\log }_{ac}}b}+\frac{1}{1+{{\log }_{bc}}a}\] equals
A)
2 done
clear
B)
0 done
clear
C)
1 done
clear
D)
log abc done
clear
View Solution play_arrow
-
question_answer26)
If\[{{2}^{lo{{g}_{3}}^{9}}}+{{25}^{lo{{g}_{9}}^{3}}}={{8}^{lo{{g}_{x}}^{9}}}\], then x = _______.
A)
9 done
clear
B)
8 done
clear
C)
3 done
clear
D)
2 done
clear
View Solution play_arrow
-
question_answer27)
What is \[lo{{g}_{10}}\left( \frac{3}{2} \right)+lo{{g}_{10}}\left( \frac{4}{3} \right)+lo{{g}_{10}}\left( \frac{5}{4} \right)+.......\]up to 10 terms equal to?
A)
0 done
clear
B)
\[lo{{g}_{10}}6\] done
clear
C)
\[lo{{g}_{10}}5\] done
clear
D)
None of these done
clear
View Solution play_arrow
-
question_answer28)
What is the value of \[{{[lo{{g}_{10}}(5lo{{g}_{10}}100)]}^{2}}_{b}\]
A)
4 done
clear
B)
3 done
clear
C)
2 done
clear
D)
1 done
clear
View Solution play_arrow
-
question_answer29)
What is the value of \[\frac{1}{2}lo{{g}_{10}}36-21o{{g}_{10}}3+lo{{g}_{10}}15?\]
A)
2 done
clear
B)
3 done
clear
C)
1 done
clear
D)
0 done
clear
View Solution play_arrow
-
question_answer30)
What is the value of \[\left( \frac{1}{2}1o{{g}_{10}}25-2lo{{g}_{10}}4+lo{{g}_{10}}32+lo{{g}_{10}}1 \right)\]?
A)
0 done
clear
B)
\[\frac{1}{5}\] done
clear
C)
1 done
clear
D)
\[\frac{2}{5}\] done
clear
View Solution play_arrow
-
question_answer31)
What is the value of\[[lo{{g}_{12}}(10)]/[lo{{g}_{144}}(10)]\]?
A)
\[\frac{1}{2}\] done
clear
B)
2 done
clear
C)
1 done
clear
D)
\[lo{{g}_{10}}13\] done
clear
View Solution play_arrow
-
question_answer32)
If \[{{\log }_{r}}6=m\] and \[lo{{g}_{r}}3=n\] then is \[lo{{g}_{r}}\left( r/2 \right)\]is equal to
A)
\[m-n+1\] done
clear
B)
\[m+n-1\] done
clear
C)
\[m-n-1\] done
clear
D)
\[m-n+1\] done
clear
View Solution play_arrow
-
question_answer33)
What is the value of\[\mathbf{2}\,\mathbf{log}(\mathbf{5}/\mathbf{8})+\mathbf{log}\left( \mathbf{l28}/\mathbf{125} \right)+\mathbf{log}\left( \mathbf{5}/\mathbf{2} \right)\]?
A)
0 done
clear
B)
-1 done
clear
C)
2 done
clear
D)
5 done
clear
View Solution play_arrow
-
question_answer34)
What is the value of \[lo{{g}_{100}}0.01\]?
A)
1/2 done
clear
B)
: \[-1\] done
clear
C)
\[\frac{-1}{3}\] done
clear
D)
-3 done
clear
View Solution play_arrow
-
question_answer35)
What is the valve of \[\left( lo{{g}_{\frac{1}{2}}}2 \right)\left( lo{{g}_{\frac{1}{3}}}3 \right)\left( lo{{g}_{\frac{1}{4}}}4 \right)........\left( lo{{g}_{\frac{1}{99}}}99 \right)\]
A)
1 done
clear
B)
-1 done
clear
C)
1 or -1 done
clear
D)
0 done
clear
View Solution play_arrow
-
question_answer36)
Which is greatest among the following?
A)
\[lo{{g}_{2}}20\] done
clear
B)
\[lo{{g}_{7}}35\] done
clear
C)
\[lo{{g}_{5}}70\] done
clear
D)
\[lo{{g}_{3}}68\] done
clear
View Solution play_arrow
-
question_answer37)
If \[\frac{\log x}{\log y}=\frac{\log 64}{\log 8}\], then the relation between x and \[\gamma \] is.
A)
\[x=\sqrt{y}\] done
clear
B)
\[x={{y}^{3}}\] done
clear
C)
\[y={{x}^{2}}\] done
clear
D)
\[x={{y}^{2}}\] done
clear
View Solution play_arrow
-
question_answer38)
If \[\mathbf{lo}{{\mathbf{g}}_{3}}\mathbf{2}=\mathbf{x}\] then the value of \[\frac{\mathbf{lo}{{\mathbf{g}}_{10}}7\mathbf{2}}{\mathbf{lo}{{\mathbf{g}}_{10}}\mathbf{2}4}\] Is
A)
\[\frac{1+x}{1-x}\] done
clear
B)
\[\frac{2+3x}{1+3x}\] done
clear
C)
\[\frac{2-3x}{2+3x}\] done
clear
D)
\[\frac{3x+1}{3x+2}\] done
clear
View Solution play_arrow
-
question_answer39)
\[log\left( \frac{1}{2} \right)+log\left( \frac{2}{3} \right)+log\left( \frac{3}{4} \right)+......+log\left( \frac{999}{10000} \right)\text{= }\!\!\_\!\!\text{ }\!\!\_\!\!\text{ }\!\!\_\!\!\text{ }\!\!\_\!\!\text{ }\!\!\_\!\!\text{ }\!\!\_\!\!\text{ }\text{.}\]
A)
\[-3\] done
clear
B)
\[-1\] done
clear
C)
0 done
clear
D)
2 done
clear
View Solution play_arrow
-
question_answer40)
\[{{\log }_{2}}1.\,{{\log }_{3}}2.\,{{\log }_{4}}3\,.\,lo{{g}_{5}}4\,.\,lo{{g}_{6}}5....{{\log }_{100}}99\]\[=\_\_\_\_\_.\]
A)
\[\infty \] done
clear
B)
0 done
clear
C)
1 done
clear
D)
Cannot be determined done
clear
View Solution play_arrow