JEE Main & Advanced Mathematics Binomial Theorem and Mathematical Induction Question Bank Binomial theorem for any index

  • question_answer
    If \[|x|<1\], then the value of\[1+n\left( \frac{2x}{1+x} \right)+\frac{n(n+1)}{2!}{{\left( \frac{2x}{1+x} \right)}^{2}}+.....\infty \]will be [AMU 1983]

    A) \[{{\left( \frac{1+x}{1-x} \right)}^{n}}\]

    B) \[{{\left( \frac{2x}{1+x} \right)}^{n}}\]

    C) \[{{\left( \frac{1+x}{2x} \right)}^{n}}\]

    D) \[{{\left( \frac{1-x}{1+x} \right)}^{n}}\]

    Correct Answer: A

    Solution :

    \[{{(1+x)}^{n}}={{\,}^{n}}{{C}_{0}}+{{\,}^{n}}{{C}_{1}}x+{{\,}^{n}}{{C}_{2}}{{x}^{2}}+....+{{\,}^{n}}{{C}_{n}}{{x}^{n}}+....\] If x is replaced by \[-\left( \frac{2x}{1+x} \right)\]and n is -n. Hence \[{{\left[ 1-\left( \frac{2x}{1+x} \right) \right]}^{-n}}=1+(-n)\left[ -\left( \frac{2x}{1+x} \right) \right]\]\[+\frac{(-n)(-n-1)}{2!}{{\left( -\frac{2x}{1+x} \right)}^{2}}+....\] \[{{\left[ \frac{1-x}{1+x} \right]}^{-n}}=1+n\left( \frac{2x}{1+x} \right)+\frac{n(n+1)}{2}{{\left( \frac{2x}{1+x} \right)}^{2}}+....\] or  \[{{\left[ \frac{1+x}{1-x} \right]}^{n}}=1+n\text{ }\left( \frac{2x}{1+x} \right)+\frac{n(n+1)}{2}{{\left( \frac{2x}{1+x} \right)}^{2}}+....\]


You need to login to perform this action.
You will be redirected in 3 sec spinner