JEE Main & Advanced Mathematics Complex Numbers and Quadratic Equations Question Bank De Moivre's theorem and Roots of unity

  • question_answer
     If \[{{x}_{n}}=\cos \,\left( \frac{\pi }{{{4}^{n}}} \right)+i\,\sin \,\left( \frac{\pi }{{{4}^{n}}} \right)\,,\] then \[{{x}_{1}}.\,{{x}_{2}}.\,{{x}_{3}}....\infty =\] [EAMCET 2002]

    A) \[\frac{1+i\sqrt{3}}{2}\]

    B) \[\frac{-1+i\sqrt{3}}{2}\]

    C) \[\frac{1-i\sqrt{3}}{2}\]

    D) \[\frac{-1-i\sqrt{3}}{2}\]

    Correct Answer: A

    Solution :

    \[{{x}_{1}}.\,{{x}_{2}}.\,{{x}_{3}}......\infty \] \[=\left[ \cos \left( \frac{\pi }{4} \right)+i\sin \left( \frac{\pi }{4} \right) \right]\]\[\left[ \cos \left( \frac{\pi }{{{4}^{2}}} \right)+i\sin \left( \frac{\pi }{{{4}^{2}}} \right) \right]\,\left[ \cos \left( \frac{\pi }{{{4}^{3}}} \right)+i\sin \left( \frac{\pi }{{{4}^{3}}} \right) \right]\,.....\infty \] \[=\cos \left( \frac{\pi }{4}+\frac{\pi }{{{4}^{2}}}+\frac{\pi }{{{4}^{3}}}+....\infty  \right)+i\sin \left( \frac{\pi }{4}+\frac{\pi }{{{4}^{2}}}+\frac{\pi }{{{4}^{3}}}+.....\infty  \right)\] = \[\cos \,\left( \frac{\pi /4}{1-1/4} \right)+i\sin \,\left( \frac{\pi /4}{1-1/4} \right)\] = \[\cos \left( \pi /3 \right)+i\sin \,(\pi /3)=\frac{1+\sqrt{3}i}{2}\].


You need to login to perform this action.
You will be redirected in 3 sec spinner