• # question_answer Match the following. Column - I Column - II P. $x$ and $y$ are in direct proportion and $x=40$ when $y=120$. If $x=60$ then $y=$ (i) 160 Q. $x$ varies inversely as $y$ and $x=12$ when $y=300$, if $x=24$ then $y=$ (ii) 180 R. $x$ varies directly as $y$ and $y=50$ when $x=30$, if $x=96$ then $y=$ (iii) 130 S. $x$ varies inversely as $y$ and $y=650$ when $x=20$, if $x=100$ then $y=$ (iv) 150 A)  P$\to$(iv); Q$\to$(i); R$\to$(iii); S$\to$(ii)B)  P$\to$(ii); Q$\to$(iv); R(i); S(iii)C)  P$\to$(iv); Q$\to$(i); R$\to$(iii); S$\to$(ii)D)  P$\to$(ii); Q$\to$(iv); R$\to$(i); S$\to$(iii)

Solution :

P. According to question, $\frac{40}{120}=\frac{60}{y}$ Or $y=\frac{60\times 120}{40}=180$ Q. According to question, $12\times 300=24\times y$ or $y=\frac{12\times 300}{24}=150$. R. According to question, $\frac{30}{50}=\frac{96}{y}$ Or $y=\frac{96\times 50}{30}=160$           S. According to question, $20\times 650=100\times y$ Or $y=\frac{20\times 650}{100}=130$

You need to login to perform this action.
You will be redirected in 3 sec