JEE Main & Advanced Mathematics Definite Integration Question Bank Fundamental definite integration, Definite integration by substitution

  • question_answer
    \[\int_{0}^{a}{\frac{{{x}^{4}}\,dx}{{{({{a}^{2}}+{{x}^{2}})}^{4}}}}=\]

    A)                 \[\frac{1}{16{{a}^{3}}}\left( \frac{\pi }{4}-\frac{1}{3} \right)\]     

    B)                 \[\frac{1}{16{{a}^{3}}}\left( \frac{\pi }{4}+\frac{1}{3} \right)\]

    C)                 \[\frac{1}{16}{{a}^{3}}\left( \frac{\pi }{4}-\frac{1}{3} \right)\]     

    D)                 \[\frac{1}{16}{{a}^{3}}\left( \frac{\pi }{4}+\frac{1}{3} \right)\]

    Correct Answer: A

    Solution :

               Put \[x=a\tan \theta \Rightarrow dx=a{{\sec }^{2}}\theta \,d\theta ,\] then we have                     \[I=\int_{0}^{\pi /4}{\frac{{{a}^{4}}{{\tan }^{4}}\theta .\,a{{\sec }^{2}}\theta \,d\theta }{{{a}^{8}}{{\sec }^{8}}\theta }}\]                    Þ \[\frac{1}{{{a}^{3}}}\int_{0}^{\pi /4}{{{\sin }^{4}}\theta }{{\cos }^{2}}\theta \,d\theta =I=\frac{1}{{{a}^{3}}}\left[ \int_{0}^{\pi /4}{({{\sin }^{4}}\theta }-{{\sin }^{6}}\theta  \right]\,d\theta \]                       \[=\frac{1}{{{a}^{3}}}\int_{0}^{\pi /4}{\left[ \frac{{{(1-\cos 2\theta )}^{2}}}{4}-\frac{{{(1-\cos 2\theta )}^{3}}}{8} \right]\,}d\theta \]                       \[=\frac{1}{8{{a}^{3}}}\int_{0}^{\pi /4}{\text{     }(1+\cos 2\theta })(1+{{\cos }^{2}}2\theta -2\cos 2\theta )d\theta \]                       \[=\frac{1}{8{{a}^{3}}}\int_{0}^{\pi /4}{(1-\cos 2\theta -{{\cos }^{2}}2\theta +{{\cos }^{3}}2\theta )\,d\theta }\]                       \[=\frac{1}{32{{a}^{3}}}\int_{0}^{\pi /4}{(2-\cos 2\theta -2\cos 4\theta +\cos 6\theta )d\theta }\]                       \[=\frac{1}{32{{a}^{3}}}\left[ 2\theta -\frac{\sin 2\theta }{2}-\frac{\sin 4\theta }{2}+\frac{\sin 6\theta }{6} \right]_{0}^{\pi /4}\]                                    \[=\frac{1}{16{{a}^{3}}}\left( \frac{\pi }{4}-\frac{1}{3} \right)\].


You need to login to perform this action.
You will be redirected in 3 sec spinner